Ultrafast dynamical process of Ge irradiated by the femtosecond laser pulses

来源 :High Power Laser Science and Engineering | 被引量 : 0次 | 上传用户:linxiong12
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The ultrafast dynamic process in semiconductor Ge irradiated by the femtosecond laser pulses is numerically simulated on the basis of van Driel system. It is found that with the increase of depth, the carrier density and lattice temperature decrease, while the carrier temperature first increases and then drops. The laser fluence has a great influence on the ultrafast dynamical process in Ge. As the laser fluence remains a constant value, though the overall evolution of the carrier density and lattice temperature is almost independent of pulse duration and laser intensity, increasing the laser intensity will be more effective than increasing the pulse duration in the generation of carriers. Irradiating the Ge sample by the femtosecond double pulses, the ultrafast dynamical process of semiconductor can be affected by the temporal interval between the double pulses. The ultrafast dynamic process in semiconductor Ge irradiated by the femtosecond laser pulses is numerically simulated on the basis of van Driel system. It is found that with the increase of depth, the carrier density and lattice temperature decrease, while the carrier temperature first increases and then The laser fluence has a great influence on the ultrafast dynamical process in Ge. As the laser fluence remains a constant value, though the overall evolution of the carrier density and lattice temperature is almost independent of pulse duration and laser intensity, increasing the laser intensity will be more effective than increasing pulse duration in the generation of carriers. Irradiating the Ge sample by the femtosecond double pulses, the ultrafast dynamical process of semiconductor can be affected by the temporal interval between the double pulses.
其他文献