论文部分内容阅读
To achieve ultrasonic casting of 35 CrMo steel,the waveguide unit for introducing ultrasound into liquid steel was studied numerically and experimentally.The structure and length of the ultrasonic waveguide were optimized by modal analysis.The simulation results showed that a T-shaped waveguide unit matched the vibrational system better than an L-shaped unit.The performance of T-shaped waveguide unit was optimized when the length of the ultrasound radiator was 135 mm.The performance of the T-shaped waveguide unit was investigated in ultrasonic casting experiments,and the effect of ultrasound on the microstructure of 35 CrMo steel was examined.The experimental results showed that the T-shaped waveguide was able to successfully introduce ultrasound into the 35 CrMo melt.In addition,the use of a silicon nitride ceramic radiator avoided high-temperature corrosion in the molten metal.The microstructure of the treated area was significantly refined and equiaxed grains were obtained.The results represented a novel method for ultrasonic casting of steel.
To achieve ultrasonic casting of 35 CrMo steel, the waveguide unit for introducing ultrasound into liquid steel was studied numerically and experimentally. The structure and length of the ultrasonic waveguide were optimized by modal analysis. The simulation results showed that a T-shaped waveguide unit matched the vibrational system better than an L-shaped unit was optimized when the length of the ultrasound radiator was 135 mm. The performance of the T-shaped waveguide unit was investigated in ultrasonic casting experiments, and the effect of ultrasound on the microstructure of 35 CrMo steel was examined. The experimental results showed that the T-shaped waveguide was able to successfully introduce the ultrasound into the 35 CrMo melt. In addition, the use of a silicon nitride ceramic radiator avoids high-temperature corrosion in the molten metal. The microstructure of the treated area was significantly refined and equiaxed grains were obtained. The resul ts represented a novel method for ultrasonic casting of steel.