核酸碱基的表观遗传修饰是生命体实现表观遗传功能的重要组成部分,可以直接参与调控细胞分化、基因表达等重要的生理过程。然而,核酸碱基的光稳定性会受表观遗传修饰的影响,相应的碱基可能成为紫外线诱导皮肤癌产生的重要突变位点。因此,研究表观遗传修饰对核酸碱基的光物理与光化学性质的影响具有十分重要的意义。本文综述了近年来本课题组利用超快时间光谱技术结合高精度的量子化学理论计算对一系列表观遗传修饰的核酸碱基激发态动力学性质的研究。研究表明,表观遗传修饰对碱基激发态性质的影响主要分为三个方面:显著增长ππ∗1态的寿命、引
乳酸菌是一类重要的食品工业微生物,目前对其功能基因鉴定和挖掘优良功能基因主要依赖于传统的基因同源重组技术,该技术尽管有较高的可靠性,但是存在操作繁琐、效率低下等不足,严重制约了乳酸菌优良菌株的遗传选育.CRISPR/Cas基因编辑技术极大提升了对多物种基因组的编辑效率,这为乳酸菌功能基因的快速鉴定及遗传改良提供了可能,但是现有的CRISPR/Cas基因编辑技术在乳酸菌的应用还存在诸多限制.本文综述了CRISPR/Cas基因编辑技术在乳酸菌基因组上的应用现状及亟待解决的问题,并展望了乳酸菌基因组编辑技术的未
对新结构富勒烯金属包合物的探索是富勒烯领域中的研究重点。本文从内嵌团簇与富勒烯碳笼尺寸匹配的角度出发,对基于金属碳氮化物团簇的新结构富勒烯金属包合物进行了研究。通过量子化学计算研究了M
3NC团簇(M=Y,La,Gd)内嵌在D
2(186)-C
96和D
2(35)-C
88分子中所形成包合物的稳定性和电子结构,发现富勒烯碳笼接受内嵌团簇转移的六个电子形成了稳定结构。结合文献已报道过的Sc
3
大气二氯二氟甲烷(CCl2F2,CFC-12)是人工合成的化学制剂,对平流层臭氧可产生严重的破坏和损耗.研究大气CFC-12的探测技术并获取其时空分布和变化,对了解区域氟氯烃气体变化趋势以及对平流层臭氧的影响具有重要意义.本文利用地基高分辨率傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)技术研究大气CFC-12的垂直分布和柱浓度的反演方法,基于最优估计算法反演2017-2020年合肥地区大气CFC-
环介导等温扩增(LAMP)技术是一种新兴的核酸恒温扩增技术,与微流控芯片技术相结合,可实现对病原菌的快速检测,具有特异性强、灵敏度高、操作简单等优点.本文根据不同终产物的检测方法对目前检测病原菌的相关微流控LAMP芯片进行了分类与介绍,并对技术的改进和存在的问题进行了分析,以期为后续的相关研究提供参考.
霉酚酸是世界上应用最广泛的免疫抑制剂之一,市场需求巨大.目前为止,主要是通过真菌发酵的方式进行霉酚酸的工业生产,而用于生产的菌株多是经过诱变的高产短密青霉菌.本文从霉酚酸的研究应用现状、化学合成以及生物合成途径、遗传调控、发酵生产以及市场分析等方面对霉酚酸的研究及产业化进展进行了系统综述.为该药物的新颖衍生物开发、提高产率以及应用先进生物技术智能化创制提供重要参考和依据.
钯基电催化剂广泛应用于直接醇类燃料电池碱性介质电催化剂。理解Pd电催化剂在醇类电催化氧化反应中的结构效应具有重要意义。本文中我们制备了PVP封端的不同形貌和尺寸的Pd纳米晶并对比研究了其在碱性介质中甲醇和乙醇的电催化氧化活性。实验结果表明具有相近尺寸(7–8 nm)的Pd纳米立方体和纳米八面体在甲醇和乙醇电氧化反应中表现出相近的本征活性,且Pd纳米立方体电催化甲醇和乙醇氧化本征性能随尺寸增大而增加。不同Pd纳米晶的电催化甲醇和乙醇氧化反应行为可归因于Pd纳米晶暴露晶面和受尺寸依赖的Pd纳米晶表面PVP封端
天然皮革(NL)具有质轻、无毒、柔软和可穿戴性好的特点。本文将稀土氧化物纳米粒子(RE)引入天然皮革中制备了稀土-天然皮革复合材料(RE-NL),并考察其X射线屏蔽性能。采用X射线衍射、扫描电子显微镜、透射电子显微镜等方法对所制备的材料进行表征,结果表明,通过制革的“复鞣”方法可成功制得稀土-天然皮革复合材料。对不同稀土天然皮革复合材料进行X射线屏蔽性能测定,发现纳米氧化镧-天然皮革(La-NL)有更优异的屏蔽性能,这是因为其K吸收边能量同X射线入射能量较近。当纳米La2O
在体外设计和构建多种仿生纳米材料是人类理解天然自组装机制的基础。胶原蛋白是动物体内含量最高的蛋白质,也是生物医用材料领域最常用的天然高分子之一。化学合成的类胶原多肽来源清洁、可设计性高,是理想的纳米生物基底材料。目前类胶原多肽自组装的策略多基于二硫键、静电引力,π–π堆叠,金属配位等单一作用力,鲜有利用有机小分子提供弱作用力诱发肽分子之间自组装。本研究利用有机分子4,4’-亚甲基双(异氰酸苯酯)修饰类胶原多肽的氮端,通过圆二色谱、动态光散射和原子力子显微镜等方法对组装体形成进行表征。研究结果显示4,4’-
疏水蛋白(Hydrophobin)是具有表面活性的小分子量蛋白质,可以在界面自组装形成双亲性蛋白膜,从而改变界面亲疏水性.研究表明疏水蛋白无毒性且无免疫原性,基于这样的性质,疏水蛋白可用于材料表面修饰、食品塑形剂、纳米药物载体而进行靶向运输或生物传感器的信号精确识别等.近年来,在枯草芽孢杆菌生物被膜中发现了一种分泌型小分子量疏水蛋白BslA(原名YuaB).研究表明,枯草芽孢杆菌疏水蛋白BslA表达产量高,纯化过程简单、易于操作,可实现大规模生产,因而BslA具有更大的应用优势和开发价值.本文总结了Bsl