论文部分内容阅读
主成分分析(PCA)是多元分析中广泛应用的降维方法,但是传统的降维模型一般是基于矩阵的秩,然而秩的计算是非凸、不连续的问题且计算复杂。本文针对这一问题,提出联合更具鲁棒性的L1范数和具有凸性的迹范数建立一种联合数据降维模型,针对模型的优化提出基于拉格朗日乘子的优化算法。最后将模型应用于UCI数据集以及Yale人脸数据集和扩展Yale B人脸数据集进行数据处理。数学分析和可视化实验结果都表明模型和优化算法是有效的。