论文部分内容阅读
为解决由于现有深度迁移学习无法有效匹配实际农业场景部署应用,而导致大规模、多类别、细粒度的病虫害辨识准确低、泛化鲁棒差等问题,该研究利用农业物联网中多种设备终端获取12.2万张181类病虫害图像,并提出了基于多流概率融合网络MPFN(Multi-stream Gaussian Probability Fusion Network)的病虫害细粒度识别模型。该模型设计多流深度网络并行的细粒度特征提取层,挖掘可区分细微差异的不同级别局部特征表达,经过局部描述特征聚合层和高斯概率融合层的整合优化,发挥多模型