论文部分内容阅读
研究了不确定分数阶多涡卷混沌系统的自适应重复学习同步控制问题.通过利用滞环函数,设计了一类参数可调的分数阶多涡卷混沌系统.针对这类分数阶多涡卷混沌系统,在考虑非参数化不确定性、周期时变参数化不确定性、常参数化不确定性和外部扰动情况下,提出了一种重复学习同步控制方案.利用自适应神经网络技术补偿了系统中的函数型不确定性,通过自适应重复学习控制技术处理了周期时变参数化不确定性,并利用自适应鲁棒学习项处理了神经网络逼近误差和干扰的影响,实现了主系统和从系统的完全同步.综合利用分数阶频率分布模型和类Lyapunov