协同过滤算法及在个性化音乐推荐中的应用

来源 :现代计算机 | 被引量 : 0次 | 上传用户:xiao959907530
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前互联网已进入了信息爆炸时期,但目前信息检索方法只能够从海量数据中检索出很小一部分比较热门的信息,而一些特定方面检索出的信息更少。基于协同过滤算法的个性化音乐推荐系统使用户能够从海量的音乐信息中很快寻找出自己感兴趣的音乐。协同过滤算法通过分析用户歌曲的播放、下载以及收藏等行为数据,计算用户之间的相似度,选取近邻用户,在近邻用户的喜好上预测目标用户的喜爱,克服了传统推荐方式的缺陷,实现了智能的个性化音乐推荐。
其他文献
介绍丹麦托普索湿接触法制硫酸(WSA)工艺的原理,针对生产运行过程中所出现的问题进行分析,通过改造解决了酸气带液、燃烧炉负荷低、酸气管线腐蚀、酸雾控制器(MCU)运行不正常、WSA冷凝器(06E005)玻璃管损坏等问题,为同类装置的运行提供经验。
传统的快速扩展随机树(RRT)算法具有探索能力强和收敛速度快等显著优点,但是由于算法采用随机采样作为路径搜寻手段,导致RRT算法的规划性能十分不稳定,且在复杂环境下尤为明显。针对这个问题,借鉴启发式算法的思想,提出动态规避算法,通过引入启发式约束采样策略,适当增加算法的指向性,并且使规划的航迹更符合无人机的飞行轨迹,然后采用动态步长规避策略,改善算法的探索和避障能力。再对规划成功的路径进行优化,获得相对平滑的航迹。最后通过MATLAB仿真对比实验对算法进行分析,对比实验的结果表明算法在障碍物密集的区域内,