论文部分内容阅读
针对SIFT算法在极值点搜索和特征计算方面的低效,提出一种基于分维搜索和环状描述符的SIFT匹配算法(SC-SIFT)。该算法将SIFT算法中的三维极值点搜索策略分解(separate)为两个维度上的逐维搜索,同时引入了一种新的环状(cricoid)特征描述算子来代替原来高维低效的特征。实验证明,该方法不仅能够提高SIFT算法的执行效率,而且提高匹配正确率,实现了对SIFT算法的优化。