大坝变形预报相关论文
大坝回归建模中常常因自变量间的多重共线性产生"病态"问题,使得回归系数无法真实反映环境因子对大坝变形的影响。利用岭回归建立......
针对大坝变形具有强非线性的特点以及在采用传统BP神经网络模型进行预报时存在学习速度慢、易陷入局部极小等问题,提出将极限学习机......
以MATLAB语言为基础,应用BP神经网络、逐步回归分析进行西津大坝27#点的变形分析与预报研究。在此基础上,进一步提出了逐步回归BP......
本文将结构风险最小化原则引入极限学习机模型,建立了在考虑变形因子模式下大坝变形预报的正则化极限学习机模型。该模型不仅计算......
传统多变量灰色模型MGM(1,n)的背景值误差会使得求解的灰色参数精度降低。总体最小二乘是一种可以同时顾及到观测误差与模型系数矩......
大坝变形监测预报的准确性对大坝安全评估具有重要作用,而其变形又受诸多相互关系复杂的外界因素的影响。阐述了目前大坝变形预报......
与单测点模型相比,大坝多测点模型能估计各测点间的空间联系,通过一个模型反映大坝整体变形态势。针对传统线性多测点回归模型中因......
奇异谱分析SSA(Singular Spectrum Analysis)是一种被广泛应用于时间序列分析中的非参数方法。SSA结合线性递推公式LRF(Linear Rec......
传统的诸如BP神经网络等学习方法训练时需要设置大量的参数,并且容易产生局部最优解。极限学习机(Extreme Learning Machine,ELM)可......
大坝变形统计模型以回归模型为主,建立变形量与自变量间的线性关系。神经网络变形预报模型可以反映监测量与效应量间的非线性关系,......