局部分类精度相关论文
为解决数据流分类中概念漂移和噪声问题,提出一种基于互近邻的多源迁移学习方法。该方法存储多源领域上训练得到的分类器,求出目标......
为了克服采用基于Boosting算法和Bagging算法生成的个体网络时难以满足误差独立条件的问题,本文提出一种基于局部分类精度估计的自......
AdaBoost集成学习方法中,分类器一经学习成功,其投票权值就已确定,同一分类器对所有待测样本均有相同的投票权值。对于难于分类样本,具......
基于局部分类精度设计多分类器系统能够有效地提高分类正确率.目前流行的动态分类器选择方法不能充分利用各个基本分类器的信息.在动......
近年来,迁移学习得到越来越多的关注.现有的在线迁移学习算法一般从单个源领域迁移知识,然而,当源领域与目标领域相似度较低时,很......