簇特征相关论文
介绍了科学管理流数据的流数据管理系统及根据BIRCH算法中聚类特征的概念,利用簇特征设计与实现了一种新的动态流数据聚类算法.这......
针对传统聚类算法无法处理大规模数据的特点,结合增量算法和簇特征的思想,在初始聚类阶段,采用基于距离的K-means聚类算法获取相应......
近年来,随着互联网的飞速发展,网上的信息数据也随之呈指数级增长。为有效应用互联网上的海量数据,人们迫切需要一些有力的组织和管理......
目前,随着网络技术与计算机技术的日益发展,互联网已经成为当前人们获取信息的主要来源之一。面对着互联网上信息日益持续地增长,仅仅......
对于大型数据库,如空间数据库和多媒体数据库,传统聚类算法的有效性和可扩展性受到限制。通过动态增量的方法,在基于密度和自适应......
提出了一种基于簇特征的文本增量聚类算法:充分利用简单、有效的k-means算法来进行初始聚类,并保留聚类后每个簇的簇中心、均值、......
大多数聚类算法都是在静态情况下运行,使其不允许添加任何增量数据。提出了一种基于K近邻(KNN)的增量聚类算法,算法包含两个创新点......