Cauchy变换相关论文
分形几何是一个崭新的数学分支,它由Mandelbrot在1975年建立.目前,分形几何与众多数学分支有交叉,比如分形上的Fourier分析,分形上......
六类Painleve方程与许多数学、物理等问题密切相关,且有大量关于解析的、代数的、几何的性质不断被发现,因此研究Painleve方程的求......
设K为复平面C上的三分Sierpinski垫,顶点分别为1,e2πi/3,e4πi/3,K的Hausdorff维数α=1+log2/log3.令μ为K上正规化的α-维Hausdorff......
复分析与分形几何交叉研究的切入点是自相似测度的Cauchy变换,由此发展出解析函数的Cantor边界性质(CBB)的研究.CBB这一概念由董新......
考虑了三分Sierpinski垫上的α(=1+(log2/log3))维Hausdorff测度的Cauchy变换F(z),得到了牛顿势函数的一个性质和F(z)的一个导数性质.......
设函数F(z)为三分Sierpinski垫上的Hausdorff测度的Cauchy变换,得到了函数F(z)的一个函数空间性质.该性质及方法将会对研究F(z)的其他一......
设Sierpinski垫上Hausdorff测度的Cauchy变换为F(z).考虑了一个与F(z)相关的辅助函数.得到了它在负实轴上具有保号性.此性质将对研究F(z)的......