iceberg概念格相关论文
形式概念分析(FCA)是一种概念化知识处理的强有力的工具,目前广泛应用于信息检索、数据挖掘、软件工程、知识发现等领域。随着信息化......
关联规则挖掘过程中频繁项集(Frequent Itemset,FI)的求解是关联规则挖掘的基础和前提,也是关联规则挖掘中最耗时的一步。降低候选......
由于概念格的完备性,在基于概念格的数据挖掘过程中,构造概念格的时间复杂度和空间复杂度一直是影响其应用的主要因素.结合iceberg......
基于概念格的集中式数据挖掘算法,不能充分地利用分布式计算资源来改善概念格构造效率,从而影响了挖掘算法的性能.文中进一步分析......
最大频繁项集挖掘算法存在扫描数据集次数多和候选集规模过大等局限。基于Iceberg概念格模型,提出一种在Iceberg概念格上挖掘最大......
研究专有的分布式数据挖掘算法是提高分布式数据库下数据分析和挖掘的有效方法.结合Iceberg概念格对于频繁项集精简表达的特性和其......