正则剩余格相关论文
随着电子技术的发展以及人工智能的出现,对模糊逻辑和逻辑代数的研究已经成为当前学者讨论的热门话题,并且取得了一系列的科研成果......
现代数学的发展为科学技术的进步奠定了基础,尤其是非经典数理逻辑在人工智能领域的应用格外引人注目,它为智能控制处理不确定信息......
本文首先基于正则剩余格的素⊙理想构造了一个拓扑空间,并证明了该拓扑空间为紧空间。然后,将拓扑限制在的全体极大⊙理想之集上......
1965年,L.A.Zadeh教授提出模糊集的概念,标志着模糊数学这门学科的诞生,也为模糊逻辑的产生奠定了基础.1973年,Zadeh教授又首先将模糊......
在逻辑推理系统和逻辑代数系统的研究中,理想和滤子是两个重要的概念和工具.本文在剩余格上引入*-运算并使用代数工具和拓扑学方法,......
本文进一步研究了具有广泛应用的一类模糊逻辑代数系统--剩余格,并引入了正则剩余格的概念,对剩余格与正则剩余格的定义进行了讨论......
引进了基于一般剩余格的G-代数-G(RL)-代数的概念,并且分别给出了G-滤子和(全序)G(RL)-代数的一系列特征刻画,同时还证明了任何正......
对正则剩余格的结构作进一步研究.利用正刚剩余格上⊕、(-)算子并结合模糊数学的思想和方法,在正则剩余格上引入了模糊理想和模糊......
首先,在正则剩余格中引入模糊理想基的概念,介绍了模糊理想基的一些重要性质,并且利用这些性质,给出了模糊理想基的三种等价形式;其......
研究了王国俊教授建立的模糊命题演算的形式演绎系统L^*和与之在语义上相匹配的R0-代数以及吴洪博教授提出的基础R0-代数和基础L^*系......
讨论了正则剩余格的性质,并定义了正则剩余格的理想、滤子、同态与同余关系,通过讨论它们的性质,得出正则剩余格的理想与滤子是一一对......
证明了Heyting代数是特殊的剩余格,由此得到了Heyting代数的若干性质,给出了Heyting代数成为Boole代数、格蕴涵代数、MV-代数和弱R......
首先讨论了De Morgan代数与剩余格的关系,并引入强De Morgan代数的概念,讨论了它的基本性质.随后,将著名的R0蕴涵拓广到De Morgan代数......
基于剩余格的理论与方法给出了MV-代数、R0-代数、格蕴涵代数、FI-代数、BL-代数与剩余格代数的定义的等价形式;进一步指出了各种逻......
在正则剩余格上给出了正蕴涵滤子的几个等价条件,引入了布尔滤子,固执滤子的概念.讨论了它们的性质及其联系,证明了在正则剩余格上......
讨论了蕴涵格、弱R0代数以及正则剩余格之间的相互关系,证明了以下结论:...
运用拓扑学的方法和原理研究正则剩余格的⊙理想概念.首先,在正则剩余格L上以全体⊙理想之集为基建立了一个拓扑空间(L,(T)L).给出了拓......
研究了正则FI-代数的性质,并证明了对于正则FI-代数(L,→,0)的蕴涵算子→,存在惟一满足条件(a b)→c=a→(b→c)的算子(○×),......
对WBR0代数进行了进一步的研究,得到了WBR0代数与正则剩余格等价的结论,在此基础上给出了WBR0代数的两种等价形式,一定程度上简化......
余剩余格理论是研究逻辑代数系统的重要工具,而余剩余格的代数结构本身就具有普遍性和代表性.文中对余剩余格的定义和性质进行研究......
基于一般的剩余格,引进了正则滤子的概念,给出了正则滤子的一些特征刻画,并且建立了正则滤子与其它一些特殊滤子(G-滤子、MV-滤子、......
期刊