论文部分内容阅读
目前我国正在大力推行"一带一路"航海战略,航海事业蓬勃发展,大量新码头正在修建中。如何快速、准确更新码头的空间信息,对于分析进出口贸易、提高码头服务效率等具有很强的现实意义。当前我国主要通过人工测绘手段更新海图,更新间隔在3到12月之间,远不能满足需求。而利用包括国际海事卫星C系统、北斗卫星、Argos卫星等手段获取的船舶位置数据来进行码头挖掘,为解决获得码头空间信息问题提供了新手段。本文面向AIS(自动识别系统)获取的海量船舶位置数据,提出了一种基于自优化参数DBSCAN(基于密度的聚类)的码头挖掘算法。一方面能够面向不同船类型的不同密度分布进行自动学习优化DBSCAN核心参数,进而聚类出包含码头的停泊区域,具备很强的灵活性,另外一方面,融合岸基结构物等空间数据,对停泊区域中的锚区和临时停泊区域等进行排除,获取码头的空间信息,并且达到很高的准确率。本文以过去(2012年4月至2014年4月)两年中国滚装船的真实轨迹数据和国际滚装船真实轨迹数据进行了码头挖掘实验,准确率能够达到93%以上。