大肠杆菌趋化性受体Tsr的趋化性分子筛选与分子机制研究

来源 :中国化学会第29届学术年会 | 被引量 : 0次 | 上传用户:klammj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  细菌能够感受周围环境中化合物,并沿着化合物的浓度梯度定向运动,这种性质称为趋化性。细菌朝着化合物高浓度的方向运动,称为正趋,该化合物就是引诱剂,反之是负趋,该化合物就是驱散剂。细菌趋化性是通过其细胞膜上的趋化性受体及其下游信号通路完成的,趋化性的特异性主要取决于趋化性受体周质区的结构。在大肠杆菌中已经发现5种趋化性受体,本课题组的毕双玉博士对受体Tar与效应物结合并激发信号通路的分子机制进行了研究,文章发表在PNAS杂志上[4]。但是对Tar的研究只筛选出了引诱剂,而没有驱散剂,负趋的分子机制也一直是未知的。为了研究趋化性受体负趋的机理,我们开始研究另一个趋化性受体Tsr,它对丝氨酸正趋,亮氨酸负趋。我们基于Tsr周质区结构虚拟筛选并人工挑选出一些化合物,然后用显微镜观察并拍摄细菌在微流芯片中沿化合物浓度梯度的运动,筛选出引诱剂和驱散剂。再用ITC等技术检测Tsr周质区蛋白与化合物分子的结合能。目前已经初步筛选出4个引诱剂,4个驱散剂。后续还需要研究这些化合物与Tsr相互作用的分子机制和对细菌趋化信号通路的影响。
其他文献
研究表明催化剂的作用在生命起源前的化学进化过程中不可或缺[1]。本项目提出在原始地球环境中存在的过渡金属配合物可能在生命进化过程中担当非酶催化剂的作用[2],以原始环境中已经证明存在的组氨酸、脯氨酸等为配体的过渡金属锌的配合物作为催化剂[3],在模拟原始地球条件即80℃-200℃、一定压力的水热环境中探究其对于肽的生成和(逆)三羧酸循环过程中各步反应的催化作用及机理。本项目旨在利用合理的化学物质和
利用邻香兰素与醋酸铜和髙氯酸钠合成了一个异核双金属配合物[CuⅡL2NaI(μ-ClO4)(CH3OH)]n (1) [L =邻香兰素]。通过X射线单晶衍射对配合物的结构进行解析,得到了主族和过渡金属杂化的一维链状异核双金属配合物。
具有高度有序可控孔道结构的纳米粒子通过桥联的有机硅烷在碱性条件下制得。硅源中硅原子之间的距离极大地影响有机硅前驱物的电荷密度,从而形成了不同的介观结构。这种纳米材料具有较好的热稳定性,低极性溶剂中较好的分散性,对有机小分子较好的吸附性,比较好的细胞穿透性和生物相容性。
采用水热法制备了新型H6P2W9Mo9O62·24H2O催化剂,并用Uv-viS、FT-IR,TG-DTA等方法对催化剂进行了表征.以微波促进30%过氧化氢氧化环己酮制备己二酸合成反应为探针,考察了催化剂的催化性能.通过正交实验探讨了各因素对反应的影响,确定了优化工艺条件为n(环己酮)∶n(过氧化氢)∶n(草酸)∶n(催化剂) = 100∶400∶1.25∶0.25,反应温度100℃,微波辐射功率
本文成功设计合成了一种新型的氨基功能化金属有机骨架 (metal-organic framework,MOF) 纳米材料,平均颗粒尺寸~50 nm(Fig.1 Left).研究结果表明,其Brunauer-Emmett-Teller比表面为1675 m2·g-1,且具有微孔和介孔的多级孔道结构(Fig.1 Middle);气体吸附结果表明该材料具有优良的CO2捕获能力,在16 ℃,25 bar下,
由于镧系金属与有机配体本身及两者之间的电荷转移能够提供有利于生成发光物质的条件,以及这些发光物质在发光、显示器、传感和光学设备中的应用价值,基于稀土金属的金属有机配合物的合成研究具有良好的前景[1,2].本文以4,5-咪唑二酸为配体,水热合成了4个三维的Ln-Cd异金属配合物[LnCd2(imdc)2(Ac)(H2O)2]·H2O(Ln = Pr(1),Eu(2),Gd(3),Tb(4); H3i
Axially chiral molecules are prevalent in biologically active natural products as well as ligands or catalysts in asymmetric catalysis.1 Accordingly,it is not surprising that diverse strategies have b
The design and synthesis of fluorescence-labeled oligonucleotides that exhibit significant enhanced emission on hybridization to complementary nucleic acid sequences have been the subject of intense r
大肠杆菌中的D-3-磷酸甘油酸脱氢酶(PGDH)催化丝氨酸合成第一步[1],并能被丝氨酸所别构调控[2].在此前的研究工作中,我们发展了二态Gō模型结合微扰的方法从理论上预先对蛋白的别构位点进行预测[3].对大肠杆菌中的PGDH,我们总共预测到了两个潜在的别构位点,一个位于活性位点附近(位点Ⅰ),一个位于别构位点附近(位点Ⅱ).在本次研究工作中[4],通过虚拟筛选结合实验验证的方法,我们发现了结合
发展酶激活剂对治疗和控制复杂疾病具有重要意义.同时,激活靶标蛋白所得到的效果也无法通过使用抑制剂来实现.然而,现阶段酶激活剂的发现和设计都存在诸多困难.之前的研究已证明激活花生四烯酸代谢网络中的15-脂氧合酶(15-LOX)可以促进炎症的消除1.我们通过对15-LOX残基二面角运动的相关性2和该蛋白表面性质分析3,发现了一个适合小分子结合的潜在别构位点,并针对该位点进行了虚拟筛选.通过体外活性测试