类酶活性的钒氧-多酚纳米片的制备及化学动力学与光热治疗应用

来源 :第十一届全国化学生物学学术会议 | 被引量 : 0次 | 上传用户:amy23683
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  钒氧化物具有良好的类酶活性,能够催化H2O2 产生活性氧,但其低水溶性和高毒性等不足严重限制了其在生物方面的应用。在此,我们采用水溶性及生物相容性良好的天然多酚单宁酸(TA)为有机配体与钒氧化物(VOx)进行一步组装,成功制备了一种水溶性及生物相容性好的纳米片(TA@VOx NSs)。在TA@VOxNSs 中,VOx 具有催化瘤内过表达H2O2 产生·OH 的能力为纳米片实现肿瘤特异性化学动力学治疗(CDT)提供了可能。除此之外,TA 与VOx 的配位使TA@VOxNSs 具有了良好的近红外光吸收特性可以用于实现肿瘤光热治疗(PTT)。进一步的体外细胞及动物实验皆证实了TA@VOx NSs 可以用于有效的CDT/PTT 协同抑制肿瘤增长。本研究提出的天然多酚与VOx 配位的组装策略为解决VOx 水溶性与生物相容性问题及赋予VOx 多模式治疗功能提供了一种新思路,具有广阔的潜在生物应用前景。
其他文献
The potential advantages of DNA-based molecular logic gates over traditional silicon based computers lie in their high flexibility,excellent biocompatibility,specific molecular recognization and predi
Luminescent transition metal complexes have attracted a growing interest because of their potential applications in various fields,such as chemosensors and photodynamic therapy.There have been many st
DNA topoisomerases are essential enzymes that control and modify the topological states of DNA.In accordance,topoisomerase activities are activated in cancer cell growths,and thus are important cellul
自从CRISPR 基因编辑技术被证实能够在活细胞中对特定基因位点成像,它已多次被用于在活细胞中原位、实时地获取染色质的定位与动态信息。[1]然而,现有体系主要借助荧光蛋白(FP)实现成像。
Limited therapeutic efficacy to hypoxia solid tumors has become the “Achilles heel” of traditional photodynamic therapy(PDT).Herein,we reported two Ir(Ⅲ)complexes which showed potent PDT effect agains
We developed new types of self-propagating cascade for the optical detection of fluoride and thiols.
传统半导体材料的光响应范围大多局限在紫外和可见光区域,水分散性差,限制了其在生物医学中的应用[1-2]。本工作采用简单的双掺杂策略,制备了氧空位和硼掺杂的纳米ZrO2-x-B,在紫外、可见光、近红外光Ⅰ-Ⅱ 区全波段照射下,均可产生活性氧,并具有近红外响应光热效应。理论计算揭示双掺杂所致的中间能级[3-4]。采用生物多糖对ZrO2-x-B 表面修饰,实现该纳米体系靶向肿瘤细胞及光热-光动力协同治疗
锡是人体生命活动必需的微量元素之一,能促进生长发育、抑制癌细胞生长.锡及其化合物的生理效应和生物医学功能,在金属化学生物学中尚待研究.纳米二氧化锡SnO2 是一种经典的宽禁带材料.采用氧缺陷掺杂策略,本工作制备了一种窄带隙的黑色纳米SnO2-x,具有全波段吸收性能.在近红外Ⅱ 区光照下,表现出良好的光热效应;通过生物多糖表面修饰,复合纳米HA@SnO2-x 可主动靶向肿瘤细胞,实现光声成像与光热治
透明质酸是一种水溶性多糖,能特异靶向细胞表面CD44 受体.[1]以透明质酸为碳源,通过一步水热法制备透明质酸基碳点(HA-CDs).HA-CDs 表面保留了透明质酸部分结构单元,能主动靶向CD44 受体过表达的肿瘤细胞.在650 nm 激光照射下,产生超氧阴离子杀灭肿瘤细胞,可用于成像介导光动力治疗.[2]通过铜氮掺杂策略,设计并制备透明质酸基碳点Cu-N-CDs@HA.研究发现,该碳点具有靶向
单壁碳纳米角(SWNHs)因其生物毒性低,在全波段都有吸收,是纳米医学领域中一种有前途的光热试剂[1],但它的水分散性差严重阻碍了其在生物医学中的应用[2].金丝桃素(Hypericin)是一种水溶性天然光敏试剂,在抗肿瘤方面有显著的作用[3],但由于其具有活跃的电子共轭体系结构,分子间容易发生聚集,导致其在溶液中的稳定性差.本研究采用简单的一步超声法将Hypericin 以π-π 堆积方式修饰到