基于微流控浓度梯度芯片技术构建用于模拟肿瘤细胞体外3D微环境的水凝胶系统

来源 :2016全国生命分析化学学术大会 | 被引量 : 0次 | 上传用户:wzw919
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  随着肿瘤组织微环境对药物活性影响的阐明,其在抗肿瘤药物筛选及细胞耐药性相关研究中的重要性逐渐被人们所关注.1 已有研究表明,在不同的氧气浓度以及基质硬度条件下,肿瘤细胞对药物具有不同的药物响应性.2在体组织器官以其真实的组织微环境为该领域研究提供了直接有效的标本,但组织内生物化学等因素的复杂性特点致使无法对微环境中某个特定因素进行深入研究.动物实验能获得终端结果,但不易实时获取细胞生长和转移等方面的多种信息,且耗时耗力,费用较高.基于以上原因,本研究利用微流控技术将复杂的微环境体系进行简化,突出主要因素,利用更为简单可行的操作技术建立体外肿瘤细胞的水凝胶三维培养平台,模拟体内肿瘤组织的基质硬度梯度、氧气浓度双梯度,对肿瘤细胞在不同外部环境下的药物响应性进行研究,使得到的细胞分析结果能够真实反映肿瘤组织的在体状态.该装置可对其周围环境中单个或多个因素进行调控,将传统研究中复杂实验方法微型化和集成化,具有更强的可操作性.首先本研究在传统圣诞树结构的基础上从芯片物理微结构和数学分析的角度对芯片结构进行设计修改,结合混合扩散产生连续浓度梯度原理,设计和制作了一款具有连续线性氧气浓度和细胞三维培养基质硬度双梯度的双层微流控芯片,并对两种浓度梯度分别进行了荧光定量分析和数字化模拟.该芯片分为上下两层,上层形成水凝胶基质硬度梯度,提供细胞三维培养通道,下层为可以生成氧气浓度梯度的反应通道.随后,本实验对该芯片进行了初步应用研究,分别实现了A549肿瘤细胞在水凝胶基质硬度梯度和缺氧浓度梯度下的培养和药物刺激反应,以及氧气浓度和水凝胶基质硬度双梯度下肿瘤细胞的药物刺激分析.该方法可以在一个双层的PDMS芯片上同时产生氧气和细胞培养基质硬度两种浓度梯度,以用于肿瘤细胞氧气和基质硬度双浓度梯度下的药物响应性研究.
其他文献
基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)在低分子量区域具有严重的背景干扰且检测重现性差,因此,在小分子分析领域的应用面临巨大挑战。富勒烯化学是研究以C60为代表的化学分支,目前已可以按照实际需要高效且定向地合成一系列功能化的C60衍生物。以C60衍生物标记小分子化合物,可将小分子化合物的分子量从低分子量区域位移至高分子量区域,从而避免MALDI-MS分析中低分子量区域严重的背景
多巴胺(DA)的由大脑内分泌的一种信号传递的神经递质,DA 浓度的高低与人体多种生理机制相关,当DA 在体内含量不足时则会诱发帕金森症、癫痫等疾病[1],因此对多巴胺的分析监测具有重要医学价值[2,3].本文采用液相还原法成功地制备了均一稳定的PDDA 聚阳离子功能化多壁碳纳米管负载铂纳米粒子(PtNPs/MWCNTs-PDDA)复合纳米材料,于Nafion溶液中形成稳定的均相分散液,修饰于玻碳电
目的 双酚F(BPF)被广泛应用于制造各种用途的环氧树脂涂料中,已在各种环境介质中有检出。有限的体内和体外毒理学研究表明,BPF具有一定的类雌激素效应。本文主要研究BPF在饮用水氯化消毒过程中产生的消毒副产物及氯消毒反应动力学,并对其雌激素效应和PPAR-γ效应进行评估。
荧光偏振是一种快速,高效的测定方法.荧光偏振值的比值特性使其不会受限于荧光光强和仪器本身波动的影响.荧光偏振法还可以区分荧光团的结合与非结合状态,因此广泛应用于免疫、适配体-蛋白体系、配体-蛋白体系以及酶联分析中.另外荧光偏振对于荧光团的体积、旋转相关时间、环境粘度等非常敏感,利用这一特性可以构建多种探针,区分物相或纳米粒子结构上的差异.锰掺杂硫化锌量子点具有较长的发光寿命,因此本身具有较小的荧光
17β-雌二醇(E2)是一种天然且活性最强的雌激素,人类慢性暴露在浓度极低的E2中,便能引起严重的健康问题[1,2].因此,建立一种简单、快速、高灵敏的分析方法测定环境中E2是一项非常必要且紧迫的任务.在该研究中,为了克服多数适配体传感技术中对适配体分子进行指示探针标记或者需要在测试溶液中额外加入电化学活性分子的缺点,通过简单的两步法将NiHCF NPs指示探针原位修饰在金电极表面作为指示探针.之
抗生素是一种治疗感染性疾病的特效药,在我国应用较为广泛。现阶段,由于抗生素的大量不合理使用,导致食品和地下水中多种磺胺类抗生素的含量超标,因此实现抗生素的快速现场定量检测具有重要意义。本文研究了基于适体传感技术,结合荧光能量共振转移原理,实现三种磺胺类抗生素的定量快速检测的方法。量子点是一种新型的荧光半导体材料,与普通荧光染料相比,具有量子限域效应,荧光寿命长,生物相容性好等优点,因此,我们计划用
席夫碱反应是一种经典的有机反应,被广泛用于各类合成。[1]Müllen课题组等利用席夫碱反应机理,以二甲基亚砜为反应溶剂,通过三聚氰胺与二醛或者三醛类物质发生脱水缩合反应,获得了一系列席夫碱网络聚合物(SNW)。[2]纳米SNW具有良好的荧光性质,可用于烈性炸药TNT的检测。[3]然而,以二甲基亚砜为溶剂合成的SNW纳米材料一般难溶于水,限制了这类材料在生命分析领域的应用。为了克服这一限制,我们尝
发展简单快速的挥发性有机物(VOCs)识别方法是环保和安全领域非常迫切的需求.在过去的几十年里,许多种检测或识别VOCs的方法被广泛研究和应用,例如,使用GC-MS、ICP-MS、电子鼻、或气体传感器.其中,传感器技术,尤其是高敏感度、稳定性好、操作简单的催化发光传感器被认为是一种非常有前景的传感器.1基于高效催化剂花状氧化镁材料,我们设计了一种新颖又简单的催化发光方法—瞬态催化发光,来识别多种V
[目的]芥子气(SM)是一种具有高亲电活性的双功能烷基化毒剂,曾在多次战争及恐怖袭击中使用,并且至今仍具有极大的潜在威胁[1].目前国际上关于芥子气毒理机理的认识仍不明确,然而国际公认对DNA烷基化是其毒性作用的始发机制与物质基础:DNA分子的烷基化可影响复制、转录或造成DNA链断裂等,严重时细胞死亡;与此同时有研究认为芥子气体内代谢产生的自由基对DNA的氧化损伤亦同时或更早发生,是芥子气毒性的重
活性氧对于人体是十分重要的.然而,过量的活性氧是相当有害的,它们会对人体产生氧化损伤,导致细胞死亡.环境中的空气是人每天都在接触的物质,在这些物质中存在少量多种的活性氧成分,每种活性氧的生理活性都有差异,研究特异性检测单种的活性氧,有助于理解每种活性氧的不同生理功能.1,2 化学发光是化学反应中不稳定中间体回到基态时产生的特征光信号.活性氧可以与某种特定基态物质相互作用产生化学发光.分析特征化学发