Rate Rules for Intramolecular H-migrations of Hydroperoxyalkylperoxy Radicals in Low-Temperature

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:Colo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Intramolecular isomerization reaction of hydroperoxyalkylperoxy radicals(·O2QOOH) is one of the most important reaction classes in the low-temperature oxidation of hydrocarbon fuels[1-2].
其他文献
本文采用反应分子动力学方法ReaxFF MD[1]探究CL-20/TNT含能共晶热分解过程的反应机理,对CL-20/TNT在不同温度下的等温热分解以及不同升温速率下的非等温热分解进行了模拟。
1,3-丁二烯(1,3-C4H6)是碳氢燃料燃烧和裂解过程中生成的一种重要产物,也是形成多环芳烃(PAH)的一种重要前驱体。但是其与HO2机理的研究迄今较少。
氢过氧烷烃ROOH不仅化学性质比较活泼,易与大气中主要氧化剂OH自由基反应,从而对大气光化学反应产生影响,而且是低温氧化过程和碳氢化合物燃烧的重要中间体,与燃料燃烧的点火过程关系紧密。
通过实验手段和理论模拟对苯和环己烷混合物在超临界压力下的裂解行为进行了研究。实验结果表明:环己烷的裂解行为相对于苯要容易得多,且随着环乙烷的加入会显著提升苯的裂解行为,而环乙烷自身的裂解则会随着苯的加入而被抑制。
MoO3/Pt/CeO2-Al2O3 composite oxides with various MoO3 content were prepared and used for n-decane cracking under supercritical conditions.
CH2CH2OH是C2H4和CH3CH2OH氧化反应重要中间体,HO2是低温条件下浓度较大的自由基[1]。本文通过精确地量子化学计算补充该反应通道并进一步完善低温氧化反应核心机理。
吸热型碳氢燃料的裂解特性一直是航空领域研究的热点,本文分别从实验和数值模拟两个方面研究碳氢燃料正癸烷随管长变化的热裂解特性,分析了壁面温度和停留时间对裂解深度和裂解产物的影响。研究发现在出口温度相同时,壁面温度和停留时间是影响裂解深度的两个重要因素:首先,停留时间随反应管长成倍增加,但仅当燃料出口温度达到650℃对裂解深度的贡献才开始占优,壁面温度大于停留时间对裂解进程的影响;其次,在体相温度不足
基于自主研发的碳氢燃料燃烧机理自动简化软件ReaxRed[1]对Metcalfe等构建的包含329个物种,1888个基元反应甲苯燃烧模型[2]进行系统简化。简化方法采用直接关系图法(DRG)、基于CSP重要性指标的冗余反应移除方法和基于CSP理论的准稳态方法[3]。
航空煤油是一种重要的液体运输燃料,常用于民用和军用航空动力装置。发展能够准确描述航空煤油燃烧特性的详细动力学模型对提高燃烧效率和减少污染物排放至关重要。本文利用射流搅拌反应器结合气相色谱和质谱研究了均三甲苯和航空煤油替代燃料(正癸烷/均三甲苯)在500-1100 K下的低温氧化动力学。
十氢化萘是高能量密度燃料中双环烷烃的典型代表,对其燃烧特性进行研究,在航空发动机设计中具有非常重要的作用。运用反应类规则结合本实验课题组自主研发的机理自动生成程序ReaxGen[1],构建了十氢化萘高温燃烧详细机理。