石英晶体微天平检测界面高分子行为

来源 :2008年两岸三地高分子液晶态与超分子有序结构学术会议暨第十次全国高分子液晶态与超分子有序结构学术论文报告会 | 被引量 : 0次 | 上传用户:JAVA01
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
无论在工业生产,还是在日常生活中,“界面”无处不在.虽然界面科学研究已经走过了两百多年的历史,但是它依然是当今最重要的科学研究领域.通过有效的方法来控制和调节界面的物理和化学性质是界面科学的重要发展方向.由于高分子科学的发展,具有不同功能的高分子不断被合成出来,高分子经常被用于制备具有不同性质的界面.为了对高分子界面的性质进行控制,必须对其性质尤其是动态行为进行表征.在过去的几十年中,一些新的界面表征技术已经发展起来,包括表面等离子体共振仪,椭圆率偏振光测量仪,原子力显微镜,朗缪尔天平,和频振动光谱,等等.然而,这些表征手段提供的信息仍然有限.特别是单一使用时,有的只能给出界面上高分子层的厚度信息,有的只能提供界面上高分子的结构信息.而且,不同手段获得的结果还经常相互矛盾.频率-耗散联用型石英晶体微天平是近年发展起来的一项新的技术,由于它能够同时实时检测界面上有关高分子的质量和结构变化,因而能够为描述和理解界面特别是固/液界面上高分子的行为提供有用的信息.本文介绍了QCM-D的基本原理及其在高分子科学中的若干应用.
其他文献
采用溶液聚合的方法,以4,4-二羟基联苯、5-氯-1-戊醇、2,4-甲苯二异氰酸酯(2,4-TDl)、三种不同链长的脂肪族二元醇为原料制备了一系列的液晶聚氨酯(LCPU).采用傅里叶红外光谱(FTI
超分子化学,研究多个分子通过非共价键作用力而形成的功能体系的科学,与有机共轭分子的很多光电现象有着紧密的联系,超分子科学和材料科学的交叉融合,推进着材料学的发展,为材料新
以有机或无机粒子作为构筑单元,通过粒子之间的组装形成各种尺寸及结构的高级组装体的研究工作已引起人们的广泛兴趣.人们期望能够象原子构筑分子或者象用分子构筑超分子那样,
香蕉形液晶化合物是分子中含有弯曲中心的分子,具有复杂的自组装行为,并因此带来了许多特殊的物理性质,如自发极化、手性超分子结构的形成等.目前,通过控制体系的相分离,从而获得
聚合物基金属纳米复合材料基于金属纳米粒子与聚合物组份间相互作用,进一步优化了复合材料的电学、热学及光学等性能.聚合物通过电荷转移、静电、氢键及其它作用形成各种纳米
近年来,基于分子间非共价键的弱相互作用,组织构建稳定的、具有特定空间构象和功能的超分子聚集体已成为目前化学研究领域的热点之一.尤其以自组装超薄膜制备和应用一直是科学
会议
甲壳型液晶聚合物是我国科学家于20世纪80年代末最先设计和合成的不同于传统的侧链型液晶聚合物和主链型液晶聚合物的一类新型液晶聚合物,其学术思想已在国际上得到广泛的认同
本文合成的是一系列含烷氧外围基的CTV系衍生物,从CTV-Ⅰ(烷氧基碳原子数为1)到CTV-Ⅵ,目的是比较它们的液晶行为.常规的合成路线是:香兰素与滨代烷烃或嗅代烯烃发生亲和取代
微成型技术在高分子微图案的制备和功能器件开发中十分重要.溶剂辅助微成型是通过在聚合物薄膜内引入溶剂来溶胀或溶解聚合物,降低聚合物的玻璃化转变温度和粘度,从而提高聚合
发展不依赖于传统刻蚀技术的、图案形状、尺寸及表面性质等可以动态调控的微图案化方法是当前国际上的研究热点.高分子由于可以通过可控聚合调控其预定结构和尺寸,并且具有易
会议