Antiba+cterial Activity of Two-Dimensional MoS2 Sheets

来源 :中国真空学会2014年年会 | 被引量 : 0次 | 上传用户:laoyang2009123456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Graphene,as a typical two-dimensional layered material,possesses extraordinary electronic and optical properties that render it for a wide range of potential applications including biomedicine[1].Inspired by the graphene research and development,graphene-like two-dimensional materials(2DMats)also show application potentials in biomedicine due to their unique properties[2-4].However,environmental and biological infuences of these 2DMats remain to be uncovered.Here we reported the antibacterial activity of two-dimensional(2D)chemically exfoliated MoS2(ce-MoS2)sheets[5].We found that the antibacterial activity of ce-MoS2 sheets was much more potent than that of the raw MoS2 powders used for the synthesis of ce-MoS2 sheets possibly due to the 2D planar structure(high specifc surface area)and higher conductivity of the ce-MoS2.We investigated the antibacterial mechanisms of the ce-MoS2 sheets and proposed their antibacterial pathways.We found that the ce-MoS2 sheets could produce reactive oxygen species(ROS),different from previous report on graphenebased materials.Particularly,the oxidation capacity of the ce-MoS2 sheets toward glutathione oxidation showed a time and concentration dependent trend,which is fully consistent with the antibacterial behaviour of the ce-MoS2 sheets.The results suggest that antimicrobial behaviors were attributable to both membrane and oxidation stress.The antibacterial pathways include MoS2-bacteria contact induced membrane stress,superoxide anion(O2·–)induced ROS production by the ce-MoS2,and the ensuing superoxide anion-independent oxidation.Our study thus indicates that the tailoring of dimension of nanomaterials and their electronic properties would manipulate antibacterial activity.
其他文献
发散场离子推力器挡板通道对放电室性能至关重要,这个区域对进入放电室的原初电子能量、速度分布等影响很大.挡板通道设计的合理性,对离子推力器放电室性能有重要贡献,而通道设计的合理性又依赖于设计者对该区域的等离子体物理过程的充分理解.本文在等离子体基本理论基础上,借鉴已有研究成果,从理论模型、试验验证两方面介绍了发散场离子推力器挡板附近区域的等离子体特性.并获得了挡板附近等离子体物理特性模型和挡板通道设
Au/Ni/Cu 薄膜材料广泛应用于军用及民用装备制造行业,其广泛而又复杂的服役环境对Au/Ni/Cu 薄膜材料的结构可靠性提出了严格的要求[1],本研究采用磁控溅射方法在p 型单晶Si(100)基片上沉积Au/Ni/Cu 金属薄膜,采用原子力显微镜(AFM)及俄歇电子能谱(AES),针对不同紫外线辐照强度作用下的Au/Ni/Cu 金属薄膜表面与界面结构的微观变化进行研究。研究结果表明:紫外线辐照
托卡马克中等离子体与第一壁相互作用会造成器壁材料受损和等离子体品质变差.改善这种相互作用主要通过控制等离子体行为和选择最合适第一壁材料.锂金属作为原子序数最低的金属,具有良好物理和化学吸附性能,是一种具有潜力的第一壁材料,在国内外多个聚变装置中开展尝试和实验研究[1].EAST 开展锂相关实验目的在于发展新的途径解决等离子与相互作用.EAST 上锂的物理实验以借助低温等离子体辅助的真空蒸发镀膜,微
磁流体密封轴用于宇航机构或部件传动性能测试实验中,其自身的摩擦力矩会对测试结果带来很大影响。通过对磁流体密封轴摩擦力矩的理论计算及实际测量,表明其摩擦力矩在不同压力、不同转速下呈现出规律性的变化,可以通过数据处理降低其对机械机构或部件实验结果的影响,并提出了改进磁流体密封轴设计的建议。
Au/Cu system is widely used in the semiconductor industries and many other felds(including micro-electromechanical systems,MEMS)[1].As an electronic component,it is applied in the spacecrafts and work
Auger electron spectroscopy(AES)is widely used in surface analysis of metal material and semiconductor materials.Due to charged effect of geological samples,the use of auger electron spectroscopy in g
等离子体物理与第一壁材料相互作用是核聚变研究必须面对的重要课题[1].锂作为原子序数最低的金属(Z=3),对多种残余杂质气体具有强烈的物理和化学吸附能力,已经发展为一种重要的、潜在的面向等离子体材料.锂化壁处理是采用蒸发锂金属对第一壁表面改性,达到改善第一壁条件及提高等离子体品质的目的[2].EAST 作为世界核聚变研究中重要装置,第一壁材料由钨,石墨和钼组成,研究复杂第一壁材料上开展锂化壁处理实
六硼化镧具有熔点高(2715℃)、导电性好、功函数低(2.66 eV)和热稳定性好等优异的物理特性,所以引起了研究者的广泛关注.而LaB6 纳米线与其体材料相比,具有更高的长径比和更低的表面功函数,因此在场发射领域更具优势.目前,虽然有一些小组开展了LaB6 纳米线的制备及发射特性研究工作 [1,2],但是绝大部分的方法都是使用了易燃易爆气体或是有毒性的源材料,因此在实际应用方面存在着很大的限制.
A stable monolayer silver flm has been developed for localized surface plasmon resonance biosensor.The dextran-stabilized silver nanoparticles of about 30nm in diameter were prepared in an aqueous med
石墨烯是一种性能良好的二维导体材料。实验上,拉曼光谱是表征其物理性质的常用方法之一。拉曼光谱结果表明,多层石墨烯的层间剪切振动模式频率随层数增加有明显蓝移[1]。此外,如果石墨烯相邻两层原子间存在一定转角,这也会显著影响其层间振动频率[2,3,4]。本研究采用密度泛函电子结构计算方法和密度泛函微扰理论方法,研究了2-4 层石墨烯在有、无转角时的层间剪切振动频率,得到了振动频率的Davydov 劈裂