基于锁相环的闭环时钟驯服方法设计与实现

来源 :第十二届中国卫星导航年会 | 被引量 : 0次 | 上传用户:linkageldap
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
授时技术目前应用广泛,其中接收机授时是普遍应用的高精度授时方式.接收机授时常用的授时校正方式分为两种:秒脉冲移相校正和时钟驯服校正.其中秒脉冲移相校正不进行晶振补偿,只通过秒脉冲移相进行相位补偿,其移相分辨率受限于接收机任务调度周期所使用的时钟频率,授时秒脉冲抖动较大;时钟驯服校正使用外接接收机作为频率参考源,提供一个长期稳定精确的秒脉冲作为频率标准,使用驯服技术对本地时钟源进行时钟驯服,以实现本地时钟源的频率校正以及长期误差的抑制,但在一些特殊的应用场景中,例如中高轨道场景中,应用场景空间的限制,不能够使用一台外接接收机只作为外接频率源使用.故设计了一种基于锁相环的闭环时钟驯服方法.接收机本身作为一个时频系统,进行本身时钟源的自驯服.在接收机稳定定位后,使用接收机本身定位获得的接收机钟差和接收机钟漂作为误差输入量,使用基于锁相环的方法去驯服接收机本身的时钟源,以实现时钟源的频率校准和长时稳定输出.以接收机接收GNSS信号模拟器生成的卫星信号进行测试,实验结果表明,接收机通过时钟自驯服技术,可以实现时钟源的频率较准和长时稳定输出,且输出的秒脉冲分辨率减小,秒脉冲输出误差峰峰值小于15ns.
其他文献
俄罗斯航空工业战略是制定行业规划和企业战略文件的基础.在最新的战略中,俄罗斯就获取国内外市场、提高行业竞争力、吸引私有资金、加强人员培养和技术储备等方面进行了研究,本文针对这四方面挑战分析了俄罗斯将采取的措施及特点.
由于尾支撑具有结构简单的优点而成为目前亚跨超风洞的主要支撑型式,但是它要破坏模型尾部的气动布局,难以应用于诸如翼身融合体和船尾型运输机等布局构型的飞行器风洞试验,同时尾支撑的悬臂梁结构型式刚度低,进行大展弦比布局飞行器风洞试验时模型易抖动而降低测力精度.因此,针对先进气动布局飞行器的飞速发展和对气动力预测精度越来越高的需求,探索一种新的支撑型式具有重要意义,国内外经验表明,张线支撑干扰小,不破坏模
本文通过分析典型构件A扫描、C扫描和破坏试验结果,提供了金属胶接构件最佳无损检测方法,以及金属胶接构件中典型缺陷的显示特征.
本文通过介绍漏磁场产生的原因,利用漏磁场进行表面裂纹测量的基本原理,得出了裂纹测定的影响因素和检测规律.
针对国内外航空类产品及零件的射线检测技术(总则)标准及具体规范要求繁多,具体项目中执行不同标准存在着较大差异性,因此为了更好地执行相关标准,该文对美国的ASTM E1742技术标准、波音和空客公司的技术规范、国内行业标准及相关客户规范等进行深入的梳理,并结合工作实际应用,对影响射线检测技术水平和质量要求的几项重要因素进行差异性分析,找出不足并寻求改进.
某型座舱压力控制器属于压调系统的核心部件,它的作用是根据飞机的飞行高度,通过精密计算后向排气活门提供规定的电压信号,进而自动控制排气活门的开度,调节飞机内外舱的压力.依据产品技术协议设计了某型座舱压力控制器的测试设备,该设备用于测试成品的基本性能,排除故障成品.简要介绍了座舱压力控制器和座舱压力制度,最后对座舱压力控制器测试设备进行硬件及软件设计.
电离层环境及其变化对GNSS系统有着不可忽视的影响.卫星通信、导航定位的无线电信号需穿越电离层,电离层暴、闪烁等电离层剧烈扰动事件会加大对卫星信号的吸收、折射或引起卫星信号幅度、相位的快速变化,造成通信误码率升高、解调失锁甚至中断,导航定位精度下降等,实时掌握电离层扰动信息,是保证导航卫星正常运用的基础.本文基于GNSS的高精度电离层总电子含量(TEC)估计原理,对我国中低纬度地区二维电离层垂直T
2020年6月23日,我国北斗三号系统最后一颗组网卫星成功发射,标志着北斗全球卫星导航系统星座全面部署完成.相对定位是高精度定位中的一项重要技术,研究并分析BDS-3/BDS-2/GPS组合短基线相对定位精度,对北斗全球卫星导航系统走向实际应用具有重要的参考意义.本文首先阐述BDS/GPS组合相对定位的数学模型,然后利用自编软件对BDS-3、BDS-2、GPS不同导航系统组合下的短基线相对定位精度
精密时间综合分析仪是满足不同领域/行业的时频同步系统测试需求专用分析仪器,具备卫星授时、网络授时、IRIG B码同步等几乎所有的时间信息接口以及主流的时钟同步接口的测试功能,用于实现时频同步设备、3G/4G移动回传网、电信IP承载网/接入网、智能变电站、高速铁路、轨道交通、航空运输、卫星授时、舰船标校及传统计费系统等领域的时频同步性能的测量.根据计量测试的溯源关系,精密时间综合分析仪需要溯源到更高
近年来,以分布式雷达、电侦为代表的军事星座系统逐步列入装备序列,其多星协同探测的核心指标为多星时间同步精度,论证需求达到ns级甚至更高.传统的基于接收机秒脉冲时差测量(Time Digital Converter,TDC)的时钟驯服策略,受限于秒脉冲自身精度和时差测量芯片的测量精度,难以实现ns级精度指标.本文设计了一种基于北斗深耦合的星载时钟驯服系统,利用卫星导航接收机对可见卫星载波及伪距测量信