基于离散元模拟的砂土液化微细观机理分析

来源 :第十一届全国土力学及岩土工程学术会议 | 被引量 : 0次 | 上传用户:ikkonen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用离散单元法,通过常体积间接数值分析和颗粒-流体耦合的直接数值分析方法,分别摸拟了室内循环三轴剪切试验和地震荷载作用下饱和砂土的液化过程,分析了饱和砂土不排水循环剪切初始液化、“状态转换”以及地震荷载作用下饱和砂土液化过程中流体-颗粒的微细观力学响应。研究表明,砂土液化在微细观上对应于配位数的累积损失和粒间接触力的不断减小,其根本原因在于循环荷载往返过程中,组构各向异性与应力各向异性的不匹配,并提出了饱和砂土地震液化的两种微细观过程。
其他文献
构造典型软土夹层场地,以19条单频率脉冲和实际地震动记录作为输入,通过大量数值计算,讨论了软弱夹层土的埋深以及层厚对场地地震反应的影响。数值计算结果表明:对于给定的地震动输入,随着软弱夹层埋深的增加,地表加速度峰值和放大系数都有减小的趋势,当埋深超过一定值后,地表加速度放大系数小于1;软弱夹层厚度对地表加速度峰值的影响与软弱夹层所处位置及输入特性有关;脉冲输入与实际地震动输入相比,放大系数计算结果
数字图像识别方法为三轴试验土样变形测量提供了一种有效的途径。为了提高测量精度必须对各种影响因素进行分析,压力室面板和水的折射影响是其中的两个主要因素。采用对特定标定板进行亚像素角点定位的方法,对压力室面板和水的折射对标定物体变形的影响进行了研究。结果表明:玻璃钢面板将被测物体放大1.0113倍,压力室充水后则将被测物放大1.0555倍。该影响在进行尺寸测量时必须通过将所得图像除以相应系数的方法予以
目前预应力锚索技术已经在许多加固既有工程中得到了十分广泛的应用,但在运用于加筋土挡墙这种特殊路段特殊工程上还比较少。目前仅在高速公路加筋土挡墙上使用过,在铁路路基加筋土挡墙上使用尚属首次。介绍了在某铁路车站出现的大型滑坡病害,恰逢车站下部加筋土挡墙路基在受到滑坡变形后,出现了局部破坏问题。为了达到治理滑坡,同时加固既有加筋土挡墙的目的,在设计中采用了预应力锚索技术对其进行处理。通过工程实例证明,以
由于高填方涵洞受力过大,通常所设计的涵洞结构尺寸大、造价高、病害多。因此,在以往研究的基础上,通过室内外试验,将一定厚度的EPS板铺设在盖板涵顶部进行减荷,结果表明:EPS板能够显著减小涵顶土压力,试验测得涵顶土压力为土柱压力的0.28~0.47倍。同时,分析了EPS板在各种机械施工荷载作用下的受力情况,根据计算结果,提出了一套EPS板顶进行土体回填的具体施工技术,并在实际工程中验证了该套技术的可
本文对某一外径11.36m、内径10.4m、净距为5.2m的公路隧道建立三维数值模型,通过计算结果与实测数据对比验证数值模型的合理性。根据该数值模型进行了隧道净间距、泥水压力、开挖速度和注浆压力等参数分析。分析结果表明,为减少后建隧道对近间距已建隧道的影响,可增大隧道净间距在1倍隧道外径以上;在有效控制排浆量的情况下,加快开挖速度以减少盾构开挖对周围土体的扰动;控制掌子面泥水压力为水土总压力的1~
为了寻求最佳减荷效果和完善减荷措施设计,继以往试验成果,在一拱涵涵顶与涵侧分别铺设了不同厚度及宽度的EPS板进行现场减荷试验,结果再次表明:通过EPS板的压缩变形协调,能够显著减小涵顶与涵侧的土压力,且铺设的EPS板越厚,土压力越小,但其减荷效果增幅递减;采取减荷措施后涵洞的沉降量也明显减小,同时改善了涵洞纵向的不均匀沉降。依据作者原推涵洞土压力理论公式,建立了简明的EPS板减荷设计方法,并提出了
从粘性土的导电性原理出发,研究了电导率与土壤亲水性的相关性,建立了电导率与自由膨胀率关系,提出通过测定一定含水率状态下土壤的电导率,可实现对膨胀土的快速判别。
黄土既具有非饱和性,又具有结构性。本文首先在控制基质吸力条件下进行了原状黄土和重塑黄土的直接剪切试验,分析了两种土的基质吸力对净应力强度指标,Fredlund抗剪强度公式中参数φb,以及Bishop抗剪强度公式中参数χ的影响。表明两种土的强度指标均随基质吸力的增大而增大,φb和χ均随基质吸力的增大而减小;在相同基质吸大于重塑黄土。其次,通过无侧限抗压强度试验,测试了不同含水量原状黄土、φb和χ重塑
总结了冻土本构模型的研究现状,提出了开展冻土本构模型研究的一个新方法,即将冻土视为非线性横观各向同性材料,应用复合材料细观力学中的夹杂理论发展冻土的本构模型,并简述了该理论。重点介绍用夹杂理论建立冻土最简单的弹性本构关系,将冻土弹性本构模型表征为含冰率的函数。指出对冻土本构模型的研究应着眼于细观,综合应用复合材料细观力学,有限元数值计算和试验手段建立冻土本构模型,为寒区工程建设提供理论依据。
黄土是典型的结构性土,其震陷性主要由内部结构和外部荷载共同作用所致。黄土震陷是内部微结构要素在外部荷载作用下不同时空中重组后的集合宏观表现。通过微结构电镜扫描实验获取黄土颗粒和孔隙的分布,应用统计细观损伤力学和结构力学的理论建立黄土震陷的结构损伤模型,解释了黄土震陷的内在破坏机理,并建立了完整的震陷本构关系。表明黄土震陷主要是由其独特的架空孔隙结构破坏和土体颗粒掉入孔隙所致,与其动应力状态和孔隙颗