耐磨结构陶瓷的系统工程优化分析与剪裁设计

来源 :2004年中国材料研讨会 | 被引量 : 0次 | 上传用户:lifen11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文将系统论和优化设计方法用于研制复相耐磨陶瓷材料中,研究表明:(1)从使用工况-耐磨机理确定材料特性-优化选材及弥散相设计-复合材料制备技术-材料性能评估-耐磨性预测-使用等过程出发,揭示系统的层次和系统处理的优化控制,突破传统研究思路和方法,可实现制备高性能耐磨陶瓷的目的.(2)对ZrO<,2>与TiC(SiC)复合Al<,2>O<,3>陶瓷进行组分设计,其材料特性(HV,K<,IC>)达到预定的目标函数.模拟喷嘴使用工况,并得到材料耐磨综合指标预测值与实验值相符的结果.同时还强调材料应用过程中的剪裁设计环节.
其他文献
本文利用DTA、热膨胀仪、XRD、扫描电镜和能谱等手段分析了淬火温度对合金组织性能的影响,计算了合金晶格常数和合金基体中含碳量随淬火温度变化而变化的规律.研究发现,在840~900℃淬火,合金的硬度随着温度的升高而升高;当淬火温度在900~1100℃之间时,硬度曲线基本保持平直;当淬火温度超过1100℃,硬度显著下降.分析发现,随淬火温度升高,溶入基体中的碳化物数量增加,淬火后残余奥氏体量增加.当
碳纤维增强铝(C/Al)复合材料因为其潜在的高比强度、高比模量等优异的力学性能,在航空航天等工业领域有着极广泛的应用前景.本文采用挤压铸造法制备了增强相体积分数为50﹪的C/Al复合材料,并对其组织、界面反应、比强度和比模量进行了研究.实验结果表明:复合材料组织致密,增强体分布均匀;在本文试验条件下,发生了少量的界面反应,界面上没有形成连续的反应层;C/Al复合材料具有较高的比强度和比模量.
本文采用一种全新的等转角挤压方法——DCAP方法对SiC颗粒增强铝基复合材料板材的等转角挤压(ECAP)的可行性进行了探索.首次成功地进行了58﹪ECAP变形量下的12﹪SiC颗粒增强铝基复合材料板料的DCAP变形,并利用金相显微镜及X射线对变形后的颗粒破碎情况及宏观织构进行了观察分析.研究结果表明DCAP变形时的纯剪切应变并不足以造成增强剂颗粒的大量破碎.尽管DCAP变形后复合材料与基体材料具有
通过测定蠕变曲线和稳态蠕变期间位错运动的内摩擦应力,及微观组织形貌观察,研究了单晶Ni基合金内应力的影响因素及合金的变形机制.结果表明:随元素Ta、W含量的增加,可较大幅度地提高合金的内摩擦应力;合金4蠕变后期的变形特征是螺、刃超位错切入γ′相中;高体积分数、且粗大的筏状γ′相及γ基体中细小γ′相可有效阻碍位错的运动,提高合金蠕变抗力,是导致该合金具有较高持久寿命的主要原因.
以TG-DSC、XRD、BET等手段研究了在不同干燥条件下采用共沉淀法制得的Cu掺杂3Y-ZrO纳米材料的晶粒度和物性变化.结果表明,在超临界流体干燥条件下制得Cu掺杂3Y-ZrO纳米材料(简称SCFD-Cu/3Y-ZrO)中铜以金属Cu的形式存在,且产物含有极少量的水;而在真空冷冻干燥条件下得到的产物(简称VFD-Cu/3Y-ZrO)是非晶态的,并含有一定量的水.与VFD-Cu/3Y-ZrO相比
本文用全自动扫描电镜背散射电子衍射仪(EBSD)分别对厚度为0.15,0.2和0.3mm的TiNi合金轧制板材进行了研究.揭示了轧制程度对TiNi合金板材显微结构和织构的影响.本研究分别从宏观(EBSD织构)和微观(小角晶界)研究讨论了TiNi合金板材的显微结构和织构随轧制而进化的规律.为该材料在生物体中的潜在应用提供了基础.
长余辉发光材料与银复合制备的抗菌陶瓷不但具有美观的装饰作用,而且具有杀菌性强、无放射性毒害等突出优点,有望成为当前较有发展前途的生态环境材料.本文以蓝色发光材料4SrO·7AlO:Dy,Eu为主原料采用丝网印刷工艺在白色陶瓷基底上制备了发光釉,并在表层制备了钼酸银抗菌层,研究了原料组成和处理工艺对发光性能和抗菌性能的影响.结果表明,以m(蓝色发光粉):m(基础釉料):m(膨润土)=100:100:
利用磁控溅射在玻璃衬底上制备了具有良好光谱选择性透过的TiO/Ag/TiO纳米多层膜.利用X射线衍射、UV-VIS-NIR分光光度计、红外发射率测量仪等对样品进行表征,优化了制备薄膜的工艺条件.同时考察了薄膜的光催化特性.结果表明:样品在可见光透过率最高可达94.5﹪,555nm波长处最高达93.5﹪,2500nm波长处反射率>65﹪.8~14μm波段红外发射率ε厚度的变化引起薄膜在可见光的透过峰
本研究所涉及的膨胀型阻燃聚烯烃含有以磷、氮为主要成分的膨胀型阻燃剂,当阻燃材料遇到高温时,表面形成一层均匀的碳质泡沫,体积在短时间内迅速膨胀,从而起到了隔热、隔氧、抑烟以及迅速阻断火焰通道的作用,同时防止远程管材熔滴,起到良好的阻燃性能.氧指数可达到30以上,垂直燃烧等级为FV-0,添加红磷后材料的氧指数可达到35.
本文以氧化铝粉末为原料,采用水溶性注浆成形制备高耐磨氧化铝材料.为减少实验工作量,采用正交设计的方法来优化制备高品质注浆料,并研究了掺杂分散剂后Zeta电位的变化.同时,还对氧化铝陶瓷烧结体的显微结构、力学性能和耐磨机理进行研究.结果表明,当氧化铝浆料中固相体积分数为50﹪时,可制得体积密度较高的精细氧化铝陶瓷材料,断裂韧性可达3.30MPa·m,硬度为11.05GPa.通过抗磨损实验研究表明:氧