乙酸在氧化铈不同模型表面吸附行为的差异性研究

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:flash_chen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  实验方面研究小分子在纳米氧化铈表面的吸附行为时,得到结果存在差异性.Stubenrauch等人[1]认为有机羧酸在氧化铈表面以脱质子化方式吸附在表面,有机羧酸根离子与表面通过monodentate模式键合.然而,已有的其他研究结果认为bridging bidentate模式比monodentate模式稳定[2-3].
其他文献
快速准确模拟确定核酸碱基间的各类氢键作用强度,对正确理解 DNA 双螺旋结构的形成机制、正确模拟描述遗传信息的复制、转录和翻译,有着重要的科学意义。我们使用可极化偶极-偶极作用模型对一系列由碱基 A、T、G、C、U 构成的氢键复合物进行了计算。我们不仅将 C=O,N-H,C-H 作为偶极,而且将碱基 A、G、C 中具有孤对电子的 sp2 杂化氮作为偶极,通过模型分子确定了相关参数,然后将其应用于一
在有机场效应晶体管中,电子和空穴的平衡传输仍存在严峻的挑战.因此设计合理的双极性电荷传输材料具有重要的科学意义.本工作运用密度泛函理论(含色散项)研究了氰基、氟取代的苯并噻吩类衍生物.研究发现,氟的引入并不能降低电子和空穴重组能(λ),而氰基能够有效的降低电子重组能使得电子/空穴重组能达到相对的平衡,其中4氰基取代的衍生物(4CNNaT)具有最小的 |λe-λh| = 0.072 eV.对4CNN
激子(或自旋)统计是基本的物理原理,决定有机半导体器件中形成单线态与三线态激子的比例(1:3)。近年来基于新原理(三线态反系间窜越、延迟荧光)的 OLED 材料引起业界广泛关注。该类材料在理论方面重新催热关于自旋统计的探讨,在应用方面有望发展成为低成本、高性能的新一代OLED材料。国内有机光电领域研究人员也很重视,多个研究机构已布局开展相关研究。从目前的发展情况看,该类材料的发光机制、原理以及进一
V型N5+是第三个具有宏观量级的全氮结构。它最初是通过HN3与N2F+反应合成[1]。后来发现HN3与NF2O+也能通过类似的反应合成出N4FO+ [2]。加入过量的HN3后,实验上并没有观测到N7O+,而是合成出N5+和N2O[3]。由于NF2O+比N2F+更容易制备,这是合成N5+更好的路径。起初的理论计算认为形成4-Oxo-N7O+中间体,然后自分解。然而符合15N标记的自分解的能垒高达40
荷电膜带有电荷,能够选择性透过某些特定离子,作为核心部件,广泛应用于燃料电池、液流储能电池等能源转化过程,以及电渗析扩散渗析等化工分离过程等。这些过程要求荷电膜具有高的离子选择传导性、强的尺寸稳定性以及好的化学稳定性,而且随着应用过程的发展,对荷电膜提出了更高的要求。
PEMFC急需降低Pt催化剂用量,以满足商业化步伐。本文以商业JM—Pt催化剂为基准,探索了我们Fe-基催化剂在阳极氢氧化(HOR)反应的可行性。我们的探索表明,HOR受H2,Had(氢吸附基团),H+复杂的传输-反应影响,但材料表面大量的Had可有效推动HOR动力学。
高分子膜燃料电池,作为一种清洁、可再生能源,受到能源部门、科学界广泛关注.但是,氧气电还原和有机小分子电氧化(如甲醇、甲酸)均是动力学缓慢的电催化反应,导致阴阳极需要高载量电催化剂—Pt/C.为此,设计、制备高效电催化剂不仅可以降低Pt使用量,而且可加速燃料电池商业化.
本文通过一种简便的制备方法合成了多孔石墨化碳负载的Fe环绕的Ru高度分散的新型催化剂.相比于单一的Ru/C和Fe/C催化剂,这一Ru被Fe隔离的复合催化剂表现出优越的氨分解活性.相关的表征结果表明,Fe不仅能够提高碳的石墨化程度,还能够使得Ru团簇在碳表面更加分散.Fe与Ru金属界面间的协同作用,也是这一催化剂高活性的重要原因之一.
采用水热法—共沉淀法制备了Fe3O4纳米纤维和磁性Fe3O4@CeO2/Ag纳米复合材料。通过XRD、FTIR和TEM等分析测试手段对其结构等进行表征。
中国科学院长春应用化学研究所长期致力于直接甲醇燃料电池(DMFCs)系统的研究,旨在提升电池系统综合性能并大幅降低电池成本,推进DMFCs的市场化。其中,电池催化材料的低Pt、非Pt化是降低电池成本的关键。在甲醇氧化方面1,2,制备了多种二元合金、非合金催化剂,利用电子效应,改善Pt纳米粒子的电子结构,最终达到改善Pt催化剂活性的目的。