Sm-Sn共掺杂ZrO2基长余辉发光材料的制备

来源 :2017中国生物材料大会 | 被引量 : 0次 | 上传用户:linjavac
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  采用高分子网络凝胶法合成0.5mol%Sm3+-xmol%Sn4+(x=0,5,10,15,20,30)共掺杂ZrO2 长余辉发光材料,以丙烯酰胺和N,N-亚甲基双丙烯酰胺分别作为单体和交联剂,70℃下引发聚合反应,形成的凝胶经1200℃煅烧2h 去除有机物后得到目标产物.荧光光谱分析表明,相较于Sm3+单掺杂ZrO2,Sn4+共掺杂极大地提高了ZrO2:Sm3+的发光强度,体系可以发射从绿色到橙色再到红色的光谱;当Sn4+掺杂浓度为10mol%时,发光强度达到最大值;10mol%Sn4+共掺杂的ZrO2 的余辉时间长达1000s.XRD 结果表明目标产物为单斜相ZrO2,无杂质相SnO2;扫描电镜图表明形成了近球形颗粒,粒径分布均一,约在100nm.ZrO2 良好的生物相容性和低毒性使得该目标产物可以用于荧光成像技术.
其他文献
聚氨酯(PU)是一类主链上含有重复氨基甲酸酯的嵌段高分子聚合物,由玻璃化转变温度较低的软段和玻璃化转变温度较高的硬段组成,具有良好的分子可设计性。生物可降解聚氨酯材料一般选择可生物降解的大分子醇,如聚乳酸(PLA)、聚己内酯(PCL)及聚醚等作为软段,被广泛的应用于人工皮肤、骨修复材料等各个方面。本研究以哌嗪为扩链剂自主设计了一系列线性哌嗪基聚氨酯脲(P-PUU)材料,并证实其具有优异特性,结合3
为了治疗和修复骨科疾病导致的大块骨缺损,研制出新型的兼具治疗和修复的多功能材料,显得十分重要。传统的生物材料缺少多功能性,从而限制了其在治疗和修复骨科疾病导致的缺损中的应用(例如:骨肿瘤)。
会议
骨缺损是目前临床常见的疾病,也是骨科治疗的难题之一。骨组织工程的不断发展,为骨缺损修复提供新的思路和治疗途径。骨基质的主要成分为胶原和羟基磷灰石,从仿生角度制备骨组织工程支架材料已成为目前研究热点之一。本研究以生物活性玻璃(bioactive glass,BG)[ i]与甲基丙烯酸酰化明胶(gelatinmethacryloyl,GelMA)[ii]为原料,采用紫外光交联法制备BG/GelMA 复
光动力治疗(PDT)可以诱导全身抗肿瘤免疫应答,在转移性肿瘤治疗中展现出巨大潜力.但PDT 诱导的免疫响应受到肿瘤组织免疫抑制性微环境的显著影响,特别是PD-1/PD-L1 免疫检查点极大地抑制了T 细胞的抗肿瘤免疫活性.针对上述难题,我们构建了肿瘤细胞酸环境激活POP 智能纳米递药系统,将光敏剂PPa和以PD-L1蛋白为靶点的siRNA递送至肿瘤部位,阻断PD-1/PD-L1免疫检查点通路,增强
上转换纳米颗粒和传统发光材料相比,具有发射峰窄,光学稳定性好,寿命长等优点。同时,采用近红外光激发对组织损伤小,穿透性强,避免了生物体自发荧光的干扰,这些优势使得上转换纳米颗粒在生物标记领域受到越来越广泛的关注[1,2]。本研究采用溶胶-凝胶法结合模板自组装技术,成功制备了掺铒生物活性玻璃纳米颗粒。通过FTIR、XRD、SEM、TEM、EDS 等测试方法表征了材料的理化性能和体外矿化性能。结果显示
非编码miRNA 具有多靶点调控过程实现抑制或降解靶基因,在组织再生和疾病发展的过程起着至关重要的作用。设计开发具有miRNA 高效装载和输送作用的新型生物活性材料对实现在基因水平协同调控骨组织的修复和再生具有重要的科学意义和研究价值。
会议
自从上世纪70 年代初由美国佛罗里达大学Larry L.Hench 教授发明生物活性玻璃以来,该材料至今已经在骨、齿及皮肤创面修复治疗中获得较广泛的应用,并取得良好的治疗效果,受到国际生物医学材料研究及临床医生的高度关注[1-3].
在骨组织工程支架中,多孔支架的结构特性是影响细胞行为、血管生长和骨形成的关键因素。它不但为细胞的生长和迁移提供模板,同时也为血管生长和骨形成提供充足的空间。目前国内外大量报道了具有组织诱导功能生物活性材料。但是,研究表明仅仅利用材料因素调动肌体自身修复功能的作用表现出一定的局限性,一方面是趋化细胞向大尺寸支架深部能力有限,另一方面是促进组织修复的周期较长。因此,将装载不同生长因子的多重控释体系组装
肿瘤的早期发现,早期诊断,早期治疗是降低死亡率,改善预后的重要手段.微小RNA(miRNA)在人体组织和血液中的异常表达与肿瘤发生和发展过程具有密切的相关性.miRNA 作为癌症诊断和预测的生物检测技术近年来越来越引起关注.
椎间盘突出症是脊椎类疾病中最为多见的病症之一,也是引起腰腿痛最为主要的原因,给病人的生理和心理健康带来了严重威胁,同时也给当代社会带来了沉重的负担[1]。目前临床使用的椎间盘替代物因力学性能与天然髓核不匹配,会出现软骨终板损伤及假体下沉,导致进一步的组织变性[2];另外目前临床使用的假体材料多为惰性材料,无法促进天然椎间盘组织的修复和再生[3]。本研究利用3D 生物打印技术构建一种具有仿生结构和功