Gate Stack Engineering of Gemanium Based Devices for Advanced CMOS Technologies

来源 :2015 Shanghai Thin Film Conference(2015上海薄膜国际会议) | 被引量 : 0次 | 上传用户:hjiejngd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Germanium has been attracting a lot of interest due to its much higher electron and hole mobility than those in Si,and thus been considered as the most promising channel material for future MOSFET devices.In order to realize high performance Ge MOSFETs,it is mandatory to obtain superior Ge gate stacks with ultrathin thickness and low interface trap density simultaneously,which is extremely difficult because typically the interface trap density increases significantly with reducing the gate stack thickness.Recently,two approaches have been developed to scaled down the thickness of Ge gate stacks with maintaining a superior electrical properties.The first one is to use the oxygen plasma to oxidize the interface of thin ALD deposited high-k/Ge interfaces(Figs.(a)).The high-k film serves as the protecting layer to the ultrathin GeOx/Ge interface formed by plasma oxidation,as well as the oxygen barrier to prevent the growth of unneeessarily thick GeOx layer.The other method is to use rate earth doped GeO2 film as the gate insulator where the rare earth atom can sufficiently increase the stability of GeO2 while decrease tzhe interface state density(Figs.(b)).High performance Ge MOSFETs have been revealed with those gate stack structures,with both higher mobility than Si MOSFETs and ultrathin equivalent oxide thickness smaller than 1 nm.These results indicate the feasibility of the Ge MOSFETs in future CMOS technology.
其他文献
随着社会的发展和市场的需求,安全性和可靠性将是下一代锂离子电池系统最受关注的问题,而以无机固体电解质构成的全固态锂离子电池也被认为是未来动力汽车和充电能源存储系统的最终目标[1-3].无机固体电解质中的单阳离子传导和载流子的无溶剂化,使得其副反应较小,且电化学窗口更宽,这将为我们提供一种高安全可靠的电池系统;全固态锂离子电池的另一个优点是它们有可能使用具有高容量的活性材料,如金属锂和元素硫,这是很
采用射频磁控溅射法制备了LiPON电解质,研究了不同射频溅射功率对其溅射速度、形貌和电导率的影响.结果表明:随着溅射功率的增加,LiPON电解质薄膜的致密性增加;电导率也不断提高.实验部分采用中科院沈科仪生产的JGP-450型磁控溅射沉积系统制备LiPON电解质薄膜.基本步骤为:调节靶基距,将溅射室抽至一定真空度,通入氩氮混合气体,调至所需功率溅射制备LiPON电解质薄膜,溅射时间20h.
会议
Nano-sized hexagonal WO3·0.33H2O with a mesoporous structure is prepared by the solution combustion method,which is firstly used as an anode material for high performance lithium-ion batteries.The sam
尖晶石结构的Li4Ti5O12是一类重要的安全型负极材料.相比于石墨,Li4Ti5O12具有较高的电压平台(1.55V,vs Li/Li+),因此可以避免枝晶锂的产生,保障了电池的安全性.在充放电循环过程中,Li4Ti5O12的结构保持良好,为其良好的循环性能提供了保证,因此被称为零应变材料.但是,Li4Ti5O12的固有导电率差,从而导致了其倍率性能较差,限制了其商业化应用.
会议
The SiSb0.8/(N-C)x(x=0,1,2,3,4,6)composite anode materials were prepared by by two-step process,including the preparation of Si/Sb composites via mechanical ball milling and then the preparation of Si
以五氧化二铌、纳米二氧化钛为原料,通过固相法制备了锂离子电池负极材料Ti2Nb2O9.考察了在不同的温度下煅烧得到的Ti2Nb2O9电化学性能.恒流充放电测试表明,随着煅烧温度升高,首次放电比容量先升高而降低.1100℃下制备Ti2Nb2O9负极材料在300 mA/g电流密度下,首次放电和充电比容量分别为194.7 mAh/g和177.2 mAh/g.循环50次后,放电和充电比容量仍达到130.2
以钛酸四丁酯,碳酸锂为原料制备了锂离子电池负极材料Li2ZnTi3O8.考察了在掺杂以下金属改性材料的电化学性能.Li2Zn0.5Mg0.5Ti3O8,Li2Zn0.5Cu0.5Ti3O8,Li2Zn0.5Co0.5Ti3O8,Li2Zn0.5Ni0.5Ti3O8,Li2Zn0.5Mn0.5Ti3O8的在电流密度为1.0、2.0A g-1的循环性能均小于Li2ZnTi3O8的放电容量,当倍率为1.
本文采用快速的溶胶凝胶合成法成功地合成了Li2MnSiO4正极材料,并考察了碳含量对其结构和性能的影响.电化学测试结果表明:刚开始随着碳含量的增加,合成出的材料的电化学性能较好.当理论碳含量为20wt%时,合成出的Li2MnSiO4正极材料呈现出了最高的放电容量,在0.06 C倍率下的首次放电容量177.5 mAh/g.随着碳含量继续增加至25wt%,放电容量略有下降,为172.6 mAh g-1
在日本和韩国,高性能锰基正极材料已经或将成为动力电池的宠儿。然而,由于生产技术和专利的原因,高端的锰基正极材料(尤其是锰酸锂)产品主要由日本和韩国企业垄断,致使国内电池生产企业在应用高端锰酸锂生产电池的成本偏高,限制了锰基正极材料在高端动力电池方面的应用。基于此,本论文利用改进的高温固相合成路线制备多孔微球状的锰基(锰酸锂和镍锰酸锂)正极材料[1-4]。通过组成和结构优化,制备的锰基正极材料具有比
会议
Periodic semiconductor nanostructure arrays have the potential for nanoelectronic and optoelectronic application.Besides the conventional low efficiency lithographic techniques broad ion beam irradiat
会议