【摘 要】
:
We realize any skew-Hermitian integrable representation of iso(n-1) as a contraction of skew-Hermitian integrable representations of so(n).We show that any
【机 构】
:
Technion-Israel Institute of Technology, Israel
【出 处】
:
The XXIX International Colloquium on Group-Theoretical Metho
论文部分内容阅读
We realize any skew-Hermitian integrable representation of iso(n-1) as a contraction of skew-Hermitian integrable representations of so(n).We show that any representation of iso(n-1) is a natural direct limit of so(n) representations.Our construction relies on the existence of Gelfand-Tsetlin bases for so(n) representations.
其他文献
The Quantum Fourier transform is the fundamental mechanism in effective known quantum algorithms.Here we present some preliminary attempts to locate this Fo
金融反恐,是指任何国家以任何合法手段,发掘恐怖主义资金的来源和流向,进而切断恐怖主义的资金来源,追踪恐怖组织和恐怖分子,以遏制恐怖活动发生的反恐行为.金融反恐的基本措
By virtue of the theory of Lie groups and Lie algebras,we can give coordinate systems adapted to the Cartan subalgebras,then obtain finite dimensional solut
The "one particle" or "two particles" interferometers can be (quantum mechanically) described in terms of Hilbert spaces of states and scattering operators.
针对涉罪居间交易毒品行为的定性问题,公安司法机关通过一系列规范性文件,逐步提出了“设置判定要素、分类定性处理、控方负责证明”的基本思路和具体意见.但是,有关意见的要
你一定会唱《没有共产党就没有新中国》可是——你知道这首经典歌曲是怎样诞生的吗你知道这首歌曲曾有两种版本吗你知道这首歌曲的作者曹火星吗在新世纪的钟声里,我们即将迎
首轮新方志编修以来,经过了近30年的修志实践,新方志在承继旧志优良传统的基础上,对志书的体例结构进行了充分的完善,逐步形成了目前所普遍
Since the first round of new L
Ling-zhi, a widely cultivated fungus in China, has a long history in traditional Chinese medicine.Although the name Ganoderma lucidum, a species originally
现代人都比较注重健身、美容、减压,方法也层出不穷,可是,耳朵运动往往容易被忽略。当你工作了一整天,觉得头昏脑胀、腰酸背痛的时候,专家们建议大家,不妨学学清代长寿皇帝乾
素描,起源于西洋造型能力的培养,主要是指单色的绘画,也是现代绘画、艺术教育的基础。它是一种正式的艺术创作,主要以单色的线条来表现客观世界中的事物,没有丰富的修饰,是最简单、最直白的表现形式。然而由于现代社会发展的需要,素描已被应用到大多数行业中,因而其种类也得到了扩展,但大致有两种主要形式,即绘画素描和设计素描,这两种素描在某些层面既有相同点又有不同点。例如,在专业领域上,设计素描和绘画素描有着很