抗高感应电压线路绝缘定相测试辅助装置的研制

被引量 : 0次 | 上传用户:shendongshendong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于同塔架设线路日益增多,存在感应电压的概率增大,有时被试线路的感应电压最高可达到几千伏,对试验设备和人员的安全构成极大的威胁[1]。本文基于消弧线圈电感电流补偿电容电流的思路,设计一种电压倒相补偿且便于现场应用的电力电路,实现抵消或抑制输电线路端部的感应电压,同时装置的引入对线路绝缘定相试验基本无影响,从而在有较高感应电压下可进行输电线路绝缘定相测试,保证线路绝缘定相试验的安全性和数据的准确性。
其他文献
油品中硫/氮化合物的高效脱除对于生产高品质油品及环境保护具有重大意义,开发清洁、高效的硫/氮化合物深度脱除技术极具挑战。利用阴离子柱撑杂化多孔材料结构可调、孔道表面富含氢键位点等特点,本文设计制备了多种阴离子柱撑杂化多孔材料作为吸附剂,用于分离模拟油品中难脱除的芳香性有机硫化物与氮化物,研究其构效关系与作用机理,为新型脱硫脱氮技术的发展奠定基础。本文首先通过改变阴离子、金属离子以及有机配体的种类,
硅材料具有超高的嵌锂容量,被认为是最具潜力的下一代锂离子电池负极材料,因此受到了研究者的广泛关注。硅负极材料中的离子输运是影响其倍率性能的关键问题。本文利用第一性原理的方法研究了界面和微结构两大因素对锂-硅合金中的锂离子输运的影响,进一步探索了硅负极材料中的离子输运机理。本论文首先研究了锂离子在硅-石墨烯复合体系中的横向迁移和纵向扩散性质。迁移势垒的计算结果表明,石墨烯的包覆可以有效降低锂离子在碳
拓扑优化技术,旨在给定的设计域内寻求一定数量材料的最佳分布,其结构设计的有效性已经得到证明并且近年来受到了越来越多的研究和关注。为了得到性能最佳的结构,多层多材料的结构优化设计得到了广泛关注,比如说加强筋结构以及多类型组合结构。针对这些问题,诸多学者开展了大量的研究工作。由于隐式拓扑优化框架没有办法直接提取最优结构对应的几何信息,且具有设计变量个数严重依赖于有限元分析网格个数、计算量较大等问题,所
飞秒脉冲激光由于其脉冲持续时间短、峰值功率高等特点,已成为揭示光与物质相互作用的有力工具,被广泛应用于物理,化学和生物学等领域。然而在实际应用中还常需要具有特定形状的飞秒脉冲,例如飞秒双脉冲序列,因此需要对激光器出来的飞秒脉冲进行整形。整形后脉冲间隔和分布都可独立调控的飞秒双脉冲在泵浦-探测、飞秒微加工、量子相干控制、化学反应解读、超短脉冲测量等领域中都有重要应用。本文基于Kogelnik耦合波理
对于Ac重子强相互作用方面的研究,从上个世纪80年代发展至今,低能态(S波和P波)的∧c的性质在理论上都得到了比较好的解释,它们的量子数基本上已经确立。近几年来,实验上发现了更多的高激发态的∧c,这就使得人们对于这些高激发态∧c的量子数的确立产生了浓厚兴趣。由于实验限制,这些高激发态的量子数并没有明确的测量。对于理论工作者来说确立它们的量子数不仅可以从理论上解释这些重子态,还可以理解重子的内部结构
近年来,3D打印技术迅猛发展,已经在各个领域得到广泛应用。相似模拟作为一种重要的科研方法,在岩土工程、采矿工程、石油钻采地层模拟中起着关键作用,传统的相似模拟砂型的制
多孔材料是一类由闭合或者相通的孔道构成的材料,常见的多孔材料有二氧化硅、活性炭、金属有机框架材料(MOF)、共价有机框架材料(COF)等等。近年来,多孔材料的功能化的研究受到广泛关注。光动力治疗(PDT)是一类新型的肿瘤治疗技术,由于其微创、无耐药性等优点在20世纪末开始快速发展起来。酞菁类光敏剂是一类高效的光敏剂,但酞菁存在容易聚集导致光动力活性下降甚至消失的问题。构建基于酞菁的多孔材料,利用多
无线网络由于具有成本低、部署灵活、覆盖范围广、支持移动性等优势,被广泛应用于工业领域中。当前时分多址技术(Time Division Multiple Access,TDMA)已经应用于无线局域网(
随着量子力学理论的不断发展和成熟,密度泛函理论计算在计算化学领域已经可以精确地计算一些化学结构并与实验数据相吻合,在某些方面还能预测化学反应结果。在目前的金属催化剂研究中,通常使用各类表征方法来确定催化剂的物化性质和形貌特征,继而对催化剂的催化效果做出解释,并且得出相应的催化机理。但在从原子层面来解释催化剂与反应底物之间的电子传递和结构变化却稍显不足。计算化学一方面可以验证已有的实验数据,从微观层
随着互联网的发展,出现了许多电子文本,该电子文本经常存在很多错误,比如基本拼写错误、语法和语义错误,从而导致出版业的书刊、政府和新闻媒体发布的公告,以及研究者的数据