关于互补序列d(TGGGGTCCCCT)结构多样性的探究

来源 :2016全国生命分析化学学术大会 | 被引量 : 0次 | 上传用户:huishouzhong2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  DNA 碱基间的相互作用不仅形成经典的双螺旋结构,还可以形成非常规的二级结构,例如:三链以及四链结构等。富含鸟嘌呤(G)的序列可以通过Hoogsten 氢键的连接形成一个G4 平面(G-tetrad),这些G4 平面进一步堆积形成G-四链体(G-quadruplex)[1]。同样,富C 的序列在弱酸性溶液中可以通过C·C+碱基相互作用形成平行的(C)双链,之后两组C双链反向插入形成i-motif 结构[2]。因为具有(G+C)这样重复单元的序列广泛存在于人类基因组中,那么研究这样一类的序列形成的结构和条件就变得非常重要。
其他文献
功能蛋白质与药物相互作用动力学参数的测定对于理解药物在体内分布、半衰期、活性及代谢过程具有重要意义。传统亲和色谱法在蛋白质与药物相互作用动力学参数测定方面鲜有报道。本研究以β2-肾上腺素受体(β2-AR)为例,采用峰值分析法测定β2-AR与沙丁胺醇的动力学参数。
谷胱甘肽(GSH)、半胱氨酸(Cys)、同型半胱氨酸(Hcy)属于小分子生物硫醇,在生理过程中发挥着关键的作用.这三种生物硫醇中,GSH 在生物体内的含量是最丰富的.到目前为止,有一部分近红外荧光探针被设计用来检测GSH[1].然而,这些近红外荧光探针大多数是基于花菁染料(Cy7)设计的[2],花菁染料的的荧光量子产率普遍较低(Φ < 0.25),因此灵敏度低,不适合生物应用.
研究表明,对非小细胞肺癌患者EGFR基因突变位点的检测对临床用药具有重要意义。由于存在大量的野生型背景作为干扰,对突变点的定性及定量检测都具有一定难度。目前常用的突变位点的检测方法存在灵敏度偏低、无法对突变含量进行定量、实验条件复杂等缺点。
超氧阴离子自由基(O2·-)在生物体内的动态变化可提供丰富的生理和病理信息,且其具有氧化活性高、体内浓度低、寿命短等特点,因此原位、实时、高灵敏地检测细胞和活体内O2·-浓度的变化,具有重要意义[1]。但是单层细胞实验和体内情况不相符,动物实验受多种因素制约[2],于是本工作运用三维培养技术,模拟体内微环境,通过双酶信号放大,高灵敏地监测了三维培养中细胞所释放的O2·-。
G蛋白偶联受体(GPCRs)在激动剂作用下,与GTP结合蛋白(G蛋白)偶联,启动下游信号传导通路,发挥其生物学功能。本研究利用GPCRs与激动剂和G蛋白的偶联过程,以β2-肾上腺素受体(β2-AR)为例,拟建立一种高内在活性受体激动剂检测与筛选新方法。
MicroRNA作为调控基因表达的非编码小分子RNA,与动植物的生长、发育、分化和生殖等过程以及人类重大疾病如癌症密切相关。因此对其进行定量检测和表达分析对于疾病的诊断与治疗和相关基因药物的开发有重要意义。本文研制了一种基于血红素增强鲁米诺体系电化学发光信号的新型生物传感器,实现了microRNA的高灵敏检测。
过硫酸盐具有强氧化性和水溶性,加热分解时可产生硫酸根自由基,已被广泛应用于乳液聚合、树脂固化及废水中有机污染物降解等领域。贵金属纳米粒子由于具有高消光系数、依赖于尺寸的光学特性及易化学修饰等特点,已成为设计新型化学生物传感器的优良平台。水溶性共轭聚电解质具有π离域的共轭主链及离子侧链,可用于离子、无机小分子、生物分子和细胞等的荧光检测。
功能蛋白质与药物相互作用研究对于揭示蛋白质结构与功能、药物在体内作用机制、指导后期临床用药和新药的设计与改造意义重大[1]。本研究针对传统亲和色谱法在蛋白质与药物相互作用研究方面配体用量大和分析时间长等不足,以β2-肾上腺素受体(β2-AR)为例,拟建立一种功能蛋白质-药物相互作用快速分析新方法。
建立简便快速、灵敏的miRNAs 检测分析方法对进一步理解miRNAs 的生物功能、疾病的早期诊断和治疗等都具有重要意义[1]。共轭聚合物由于其独特的光电属性和荧光信号放大作用,在高灵敏度生化传感领域备受关注[2]。我们利用特异性核酸酶结合阳离子共轭聚合物(CCP)的多元检测能力,发展了均相溶液中荧光可视化检测miRNAs的新方法。
MicroRNA(miRNA)在基因表达调控中起重要作用,其异常表达与人类多种恶性肿瘤相关。因此,准确测定其含量对于在miRNA应用与临床实践是十分必要的。目前用于miRNA定量检测的方法主要包括非直接法和直接法。大都需经过miRNA富集、扩增或化学/酶联修饰,并且要可视化凝胶处理或用荧光基团标记。这些过程皆需花费大量的时间和人力,不仅会受到多种因素的影响和干扰,而且只能提供相对定量的数据。