吲哚超临界水气化过程中氮元素迁移机理与动力学研究

来源 :第16届全国氢能会议暨第8届两岸三地氢能研讨会 | 被引量 : 0次 | 上传用户:cairinga
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文考察了吲哚作为煤的含氮模型化合物的超临界水气化.实验温度650℃~750℃,压力25MPa,停留时间1~30 分钟,物料浓度2wt %,K2CO3 做催化剂.实验分析方法包括高效液相色谱法,可见光分光光度法,气象色谱法和气质联用法.
其他文献
As a new solar thermochemical hydrogen production route,the technology of hydrogen production from biomass gasification in supercritical water(hereinafter referred to as SCWG)heated by solar energy ha
会议
单斜相BiVO4 的带隙大约为2.4 eV,对应吸收边在520 nm 左右,因此,BiVO4可以作为可见光催化的半导体材料.但是,BiVO4 对可见光的吸收能力较弱,内部光生空穴-电子易复合以及载流子迁移率低,这些都限制BiVO4 光电转换效率.
会议
光催化剂的活性和稳定性关系到光催化产氢规模化实际投产的可行性。本文以CdXZn1-XS 多元硫化物固溶体为模型光催化剂,通过改变牺牲剂及反应温度等实验条件,测试光催化剂的活性和稳定性。
会议
With the growth of the population and increase of the energy demand,to obtain the renewable and clean energy,the hydrogen,is a desirable way to realize the sustainable development of human beings.
会议
氢气作为一种高效、清洁的二次能源载体,且资源广泛,若能直接从水中大规模获取,不但能缓解环境压力,更能为工业及城市发展带来便利。利用高温熔盐堆产生的高温热和电力作为清洁能源,通过高温电解水蒸气制氢(HTSE)技术可实现大规模清洁制氢。
会议
随着社会的进步和经济的增长,全球能源需求量也不断地增加,因此寻找新的能源引起了越来越多的关注。氢能作为二次能源,具有清洁、高效、安全等诸多优点,而高效率的制氢的基本途径是利用太阳能。
会议
In nuclear power plants,there is no satisfactory industrial treatment of the spent ion exchange resins(IREs).Supercritical water gasification(SCWG)could offer an efficient and clean treatment to spent
BiVO4 has recently attached much attention as one of promising photoanode materials for efficient solar water splitting.We reported a reproducible synthesized TiO2/BiVO4/Co-Pi nanorod array photoanode
会议
作为清洁和丰富的一次能源,太阳能具有巨大的开发利用价值,太阳能光催化分解水制氢是解决能源危机和环境污染的理想途径。实验室前期发明火焰辅助热解法制备光催化剂,该方法具有简单方便、环境友好、无需热处理的优势,可制备元素掺杂或修饰的新型氧化物光催化剂[1-5]。
会议
A new reactor concept for solar H2O splitting using ceria as a dense membrane was introduced.Thermodynamic model of the reactor system was established.
会议