二维MXene/LDH电极的组装及电化学性能研究

来源 :西安工业大学 | 被引量 : 0次 | 上传用户:ieuieuieu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为最重要的储能设备之一,超级电容器因其出色的功率密度和良好的循环稳定性而被广泛用于储能系统以及电动汽车等方面。其中,电极材料是超级电容器的核心,在超级电容器的商业化中起着关键作用。在众多电极材料中,二维材料凭借其独特的层状结构、丰富的理化性质而备受关注。基于此,本文选取结构匹配、性能互补的二维层状材料Ti3C2Tx MXene和NiCo-LDHs为研究对象,将这两种二维层状材料进行层间组装来构建复合电极,进而研究复合电极中这两种材料的协同作用,并以此为基础进一步探究复合电极在不同电解质中的储能机制,不同层间组装方式下复合电极层间阻抗关系以及电解质离子在复合电极层间的扩散规律,具体如下:(1)通过静电组装的方法制备出Ti3C2Tx MXene/NiCo-LDHs复合电极材料。在复合电极中,高电导性的MXene和高比电容的NiCo-LDHs优势互补,两种二维材料发挥协同作用,提高了电极材料的电化学性能。经测试计算发现,Ti3C2Tx MXene/NiCo-LDHs复合电极在0.5g-1的电流密度下显示出更高的639 F g-1的比电容,在6000循环后具有93%的电容保持能力。此外,它在150 W kg-1的功率密度下能达到31 Wh kg-1的能量密度。(2)以二维Ti3C2Tx MXene/NiCo-LDHs层间组装复合电极为基础,进一步探究复合电极在不同电解质中的储能机制。通过原位拉曼光谱对Ti3C2Tx MXene/NiCo-LDHs电极分别在含有碱性、酸性和中性电解质中的充放电过程进行了电化学研究。研究发现,二维电极的水合反应在不同电解质广泛存在。其中,碱性电解质中的OH-会促进NiCo-LDHs的电化学性能,同时还会与Ti3C2Tx MXene末端的-F产生新的电化学反应,从而大大提高了Ti3C2Tx MXene/NiCo-LDHs整体的电化学性能。因此在碱性电解质中Ti3C2Tx MXene/NiCo-LDHs复合电极电化学性能最为优异。(3)以二维Ti3C2Tx MXene/NiCo-LDHs层间组装复合电极为基础,在碱性电解质下进一步探究了不同层间组装方式下Ti3C2Tx MXene/NiCo-LDHs的阻抗机理模型以及界面离子扩散规律。我们以二维MXene和NiCo-LDHs为原料,采用基材表面直喷方法分别制备了1:3、1:1、3:1比例的层间组装MXene/NiCo-LDHs复合电极。通过电化学阻抗谱对其进行阻抗分析,并计算了OH-离子分别在三种模型下的扩散系数。研究发现,对于二维层间组装电极,当赝电容层更接近电解质时(MXene:NiCo-LDHs=1:3时),其界面阻抗最小(Rct=56.5Ω),离子扩散效率最快(DOH-(M1L3)=7.5706×10-15 cm~2 s-1),电化学性能最为优异。
其他文献
随着第二次工业革命的结束,人类对煤、石油、天然气等化石燃料的消耗不断增加。这些化石燃料的燃烧严重破坏了生态系统中的碳循环平衡。这导致了温室效应和严重的能源危机。Haber-Bosch法是氨工业生产中应用最为广泛的人工固氮合成氨技术。但是该反应需要在高温高压下进行,需要大量的能源消耗,对环境极不友好。电化学还原法因其产物选择性比较高,对实验要求比较低,且环境友好,因此受到了广泛的关注。然而,CO2和
学位
活塞材料所使用的铝硅系合金传统的强化工艺已经较难满足工况使用要求。TiC颗粒增强铝基复合材料既有传统铝合金的低密度特点,又兼具了TiC颗粒高硬度,高熔点的优势,同时TiC能够细化α-Al颗粒,故具有良好的应用前景。然而铝硅合金中Si元素的存在,会导致TiC分解产生条状相,同时在铝熔体中由于TiC的自身特质会发生团聚现象,组织中存在长条状相Al Ti Si相。TiC稳定性差、TiC团聚性强是限制Ti
学位
随着人们对高分辨、低成本热成像技术的不断追求,硫系玻璃微透镜阵列成为迫切需要研究的一种新型光学元件,其应用可大力推动热成像技术的跨越式发展。As40Se60玻璃微透镜具有原材料价格低廉、抗腐蚀、低熔点、较高的折射率等优势,可应用于多种领域。随着红外技术应用范围不断扩大,硫系玻璃微透镜将被用于更多的领域,为现代社会的发展提供更多的可能性。目前生产硫系玻璃微透镜阵列存在效率低、成本高及技术难等问题。本
学位
铋层状压电陶瓷具有高居里温度以及良好的介电性能,在高温传感器领域具有很好的应用前景。然而,铋层状陶瓷的晶体结构是由绝缘铋氧层包夹着一定层数的氧八面体类钙钛矿层沿着c轴方向有序交替排列而成。由于该结构特性,使得铁电极化反转只能发生在二维的a-b平面内,其高的矫顽场强度使陶瓷难以充分极化,所以铋层状结构陶瓷的压电性能普遍较低(SBN陶瓷的d33=14 p C/N)。而掺杂改性是提高陶瓷电学性能的有效办
学位
钛基复合材料以高比强度、高弹性模量及高耐磨等特点,在航空航天和军事装备等领域得到广泛应用。原位自生法是制备钛基复合材料的常用方法之一,通过该方法制备增强相具有稳定性高、界面结合好、易均匀分布等特点。本文采用感应熔铸法结合原位自生技术,通过添加0.5wt%Si C(TMC1)、1wt%Si C(TMC2)、1.5wt%Si C(TMC3)、2wt%Si C(TMC4)、4wt%Si C(TMC5)、
学位
高功率密度柴油机活塞、高速列车受电弓滑板以及电磁炮导轨、电枢等部件常经受高温热源往复冲击,发生严重烧蚀时会影响工作稳定性、大幅缩短服役寿命。金属改性C/C复合材料具备比强度高、热膨胀系数低、导热导电性能优异以及自润滑等特性,是可应用于上述零部件的主要备选材料之一,然而该类材料的高频往复烧蚀行为与机理尚不明确,基体调控方法对其性能的影响鲜有报道。本文主要针对铝合金改性C/C复合材料用于上述零部件潜在
学位
表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)被广泛用于食品安全和环境检测领域,用来快速、灵敏和无损地检测各类有害物质。铜基纳米结构由于具有较强的电磁特性、表面等离子体共振特性以及成本远远低于纯金或者纯银基底,成为近年来研究热点。但是,由于目前所制备的铜基底SERS性能无法满足实际应用的问题。因此,制备出高灵敏度、高均匀性和重复性好的基底是该领域重
学位
混杂增强铝基复合材料比单一颗粒增强材料具有更致密的组织和更为优良的综合性能,在工业应用中有更广阔的前景。通过传统铸造工艺制备的混杂增强复合材料容易产生颗粒团聚、材料结合性差等问题,而选区激光熔化(SLM)技术能够减少颗粒团聚、提高致密性同时实现材料的快速成形,适合制备较为复杂的零件。经过不同热处理工艺能够有效提高SLM成形试样的力学性能,但目前大多相关研究针对单一颗粒增强材料,因此有必要对混杂增强
学位
钛合金具有比强度高、耐蚀性优异等特点,在船舶及海洋装备中常被用来做螺栓与钢结构进行连接。但是,由于钛合金电极电位较高,其与钢连接时极易导致钢发生严重的电偶腐蚀而失效,造成危险事故发生及巨大的经济损失。本课题对TC4钛合金表面进行微弧氧化(MAO)与硅烷化(BTESPT)复合处理,研究其与AH36合金连接的电偶腐蚀行为,并利用COMSOL Multiphysics有限元软件建立仿真模型来预测长期电偶
学位
在各种能源中,氢能由于具有高能量密度和环境友好的特点,被认为是传统化石燃料优良的替代品。电解水不仅可以以环保的方式将电能转化为化学能,还易与其他间歇性能源(如太阳能)相结合,为高纯度制氢提供了一个很有前景的解决方案。然而,析氢反应需要较大的驱动过电位,导致消耗较高的能量,故合理选择高效的催化材料成为了研究重点。高熵合金因其组分易调控和催化活性高等特点被广泛关注。本文采用“自下而上”(Bottom-
学位