燃煤烟气污染物控制技术性能评估及经济性优化策略研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:stillzhl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我国是煤炭消费大国,为了控制燃煤烟气污染物的排放,燃煤电厂普遍投运了超低排放技术,2019年超低排放机组容量8.9亿千瓦。然而从技术层次来看,污染物控制技术的运用情况尚不明确,超低排放系统运行成本与环保电价之间的关系缺乏相关研究。超低排放系统内换热装备对于系统性能的影响尚不明确。从区域层次来看,国内外学者针对电力行业的评估研究主要从污染物排放的角度展开,忽略了污染物减排流程的性能。本研究建立了燃煤电厂超低排放改造前后污染物控制技术数据库,编制了典型超低排放系统运行成本谱图。探究了不同超低排放技术的适用性。针对典型燃煤机组超低排放系统,进行了物质流分析、能效评估以及4E综合评估(能、?、环保性能、经济性综合评估)。针对全国煤电行业,进行了从污染物减排到排放全流程多维度的评估,同时提出了煤电行业污染物控制的经济性优化策略。首先,调研了超低排放前后燃煤机组污染物控制技术。超低排放改造开始前,采用石灰石-石膏法脱硫技术、SCR脱硝技术的燃煤机组容量占调研机组容量的比例分别为84.7%及95.2%。超低排放改造之后,长三角地区115台燃煤机组中,投运湿式电除尘器燃煤机组的容量占调研机组容量的比例为57.4%。建立了污染物控制技术的成本评估模型以及投资成本函数库。编制了典型100-1000MW燃煤机组超低排放系统运行成本谱图,根据环保电价补贴划分成了4个区间。当超低排放电价补贴为0时,600MW以及1000MW燃煤机组超低排放系统仍然可以实现经济性运行。对基于石灰石-石膏法的脱硫超低排放技术,空塔及双塔技术的设计入口SO2浓度均值分别为1692及4851mg/m3(95%置信度水平)。其次,针对典型燃煤机组超低排放系统进行了物质流分析、能效评估以及4E评估。对于660MW机组,超低排放改造前后协同除尘效率均值由79%增长至94%,PM脱除性能显著提升。对于660MW机组,基于监测数据的实时排放因子2,、,及,的分布范围为0.0001-0.301 g/kg、0.053-0.835 g/kg及0.0048-0.08 g/kg。对于1000MW机组,2,、,及,的分布范围分别为0.055-0.404 g/kg、0.073-0.797 g/kg及0.0002-0.0547 g/kg。建立了基于监测数据的超低排放系统能效评估模型。对于1000MW燃煤机组,随着机组负荷从50%增加至100%,超低排放系统的能耗由13542k W增加至19104k W,单位发电量CO2排放从10.4g/k Wh下降至8.2g/k Wh;发电过程碳排放占比为98.42%-98.7%,超低排放系统碳排放占比为1.3%-1.58%。基于能分析、?分析、经济性分析及环保性能分析,建立MGGH对于超低排放系统性能影响的4E评估模型。设计工况下(660MW),烟冷器对数平均温差为36K,?效率为81.3%。LLTESP的SO3脱除效率为86%,MGGH系统年运维成本为157.9万元。最后,建立了超低排放情景下全国煤电行业基础数据库,涵盖100MW及以上的燃煤机组共计2157台,共计8.6亿千瓦。在超低排放情景下,SO2、NOx及PM的年削减量分别为2284万吨、754万吨及34370万吨。煤电行业的平均SO2、NOx控制成本分别为1453.2-12306.5元/t、3035-9675元/t。考虑到排放因子的波动,SO2、NOx及PM排放量的范围分别为430~558kt、638~941kt及64~96kt。煤电行业结构性优化策略“上大压小”能够降低污染物控制成本。在实现相同发电量的情况下,如果用3台1000MW燃煤机组替代10台300MW燃煤机组,SO2、NOx及PM控制年运行成本下降幅度分别为20.7%、27.6%及34.4%,碳排放下降7.1%。平均SO2控制成本对于电价和吸收剂价格的敏感度分别为0.3-0.61及0.0225-0.192。
其他文献
近年来,二硫化钼(MoS2)因其性质稳定、无毒环保、易制备易改性等优越的性质,在传感器、制氢、光催化及光电降解等领域有潜在的应用前景。但单片层的MoS2本身具有光生电子空穴易复合、量子利用效率低,导电性能差等缺点。为改善该材料的性能,目前主要采用功能化MoS2、非功能化形貌调控、金属纳米粒子表面修饰、半导体异质复合等方法。本文主要以钼酸钠和硫脲为反应前驱体,制备了具有更多活性位点和光电性能较强的M
酞菁(Pc)是一类有大环共轭结构的芳香性化合物,一般显绿色或蓝色,有良好的化学稳定性。合成过程中,酞菁外围易于进行化学修饰,酞菁中心空穴可以引入金属离子形成金属配合物。近年来,酞菁作为光敏剂、有机半导体、催化剂等被应用于众多领域。酞菁在可见近红外光谱中的吸收受到外围取代基和中心金属离子的影响。研究发现,某些在近红外区吸收很弱的烷氧基金属酞菁显示出较高的近红外透过率。为了降低暴露在夏日高温下建筑的温
石墨烯插层技术因其可以很好的调控石墨烯的性质被人们所关注,而金属插层可以形成金属/石墨烯/金属三明治结构。过去的几年里,为了寻找新的石墨烯基纳米材料,大家一直在探索金属/石墨烯复合物的应用。目前,大部分研究都只关注金属在石墨烯单侧吸附,而关于金属在石墨烯双侧吸附的研究很少,尤其关于双侧吸附对石墨烯的电子性质有何影响的报道较少。本文利用基于密度泛函理论的第一性原理计算结合准原子最小基轨道(QUABM
刺激性响应材料指的是具有感知外部刺激(光、电、热等)的一类材料,因其能够通过感知外部刺激而产生相应的处理方式而被称为智能材料,光致变色材料作为其中的一种材料,具有快速且较灵敏的响应而成为广泛研究的对象。其中以电子转移型的紫精或NDI为引入的有机光致变色分子而合成的光致变色材料已经成为研究的热点。本论文以研究光致变色晶态材料为主要路线,开展了两方面的工作。第一:通过分子间非共价键的相互作用,以紫精有
具有电子多样性的过渡金属二硫化物(TMDs)异质结是纳米电子和光电子器件科学和技术领域的研究热点。尽管关于二维TMDs异质结的研究很多,获得很多优异的研究成果,但实验和理论研究中主要关注的对象是单一横向或者纵向异质结材料的合成、性质和应用探索,关于二维杂化异质结材料的性质及其调控缺乏详细的理论研究。本论文通过基于密度泛函理论(DFT)的第一性原理计算,系统地研究了(WS2-MoS2)/WS2杂化异
在过去的几年中,金属卤化物钙钛矿量子点(PQDs)凭借其优异的光学性能和广阔的应用前景,受到了研究人员们极大的关注。由于其具有可调节的带隙,高光致发光量子效率,激子寿命长和载流子迁移率大等特性,已经被广泛地应用在了太阳能电池,高效发光二极管,高灵敏度光电探测器等领域。尽管钙钛矿量子点有着如此广阔的应用前景,但也存在着诸如稳定性差,合成产量低等缺点,严重限制了其进一步应用。为了克服钙钛矿量子点的这些
稀土离子掺杂的上转换发光材料在近些年受到了广泛关注,其发光性质以及制备方法已成为学术界研究的热点。以Yb3+–Er3+掺杂的上转换发光材料体系为例,大多数研究集中在能量传递和掺杂浓度对发光性能的影响,而关于电子传递对上转换发光性能影响的研究相对较少。本文中,我们在Yb3+–Er3+上转换体系中引入了金属离子X(X=Pr3+,Ce3+,Tb3+,Mn2+),其中X与Yb3+离子之间发生电子传递形成Y
碳点(CDs)自2004年从单壁碳纳米管中发现以来,凭借其原料来源广泛、光学性能优异、低毒、生物友好等特点在光电器件、生物医疗、化学检测和防伪安全等领域具有极大的潜在应用价值。然而,如何在水溶液中实现CDs稳定的发光仍然是一种挑战。目前,随着科技的快速发展,工业生产加快,在废水和农田中存在大量对生物体有害的物质如爆炸物和金属离子等,不利于生命体的可持续发展。发光材料因对有害物质具有灵敏的响应性,被
乡村振兴战略是关系全面建设社会主义现代化国家的全局性、历史性任务,乡村振兴战略的实施推进与基层党组织领导力息息相关,基层党组织领导力是乡村振兴战略顺利实施的根本保障。通过增强政治引领功能、提升思想引领功能、优化服务引领功能、加强组织引领功能、强化文化引领功能,着力提升基层党组织的领导力,助推乡村振兴战略顺利实施。
二维过渡金属硫属化合物(TMDs,transition metal dichalcogenides)作为典型二维半导体材料具有非常丰富的新奇物理现象,包括量子自旋霍尔效应、能谷极化和二维超导等,并且由于强的量子限域效应显著地增加体系中载流子的库仑相互作用,进一步引发更多诸如多体效应等的有趣物理现象,使其未来在新型光电子器件等领域表现出巨大的应用潜力。然而,现阶段TMDs的荧光效率仍处于较低水平,无