基于电化学沉积金属氧化物材料的超级电容器研究

来源 :常州大学 | 被引量 : 0次 | 上传用户:bood
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了解决不可再生能源减少和能源需求增多的问题,寻找新型能源或者开发高效、稳定和无污染的储能装置成为了科研工作者研究的重点。此时,超级电容器凭借优异的功率密度和循环性能备受关注。为了满足人们对能源的大量需求,我们不仅要保证超级电容器的现有特性,还需改善它的能量密度。根据公式E=1/2 CV~2,我们发现可以通过增加电位窗口和增大比电容这两种方式来实现。增加电位窗口的方式是将其组装成不对称电容器,将其潜在电位窗口增加到2.2 V。对于如何增大比电容而言,则可以通过研发出一种具备优异比电容的电极材料来解决这个问题。近年来,正极材料的研究已比较完备,但是负极材料仍存在电容小、导电性差等问题,这些问题严重阻碍了它在储能方面的应用。本论文以改进超级电容器的比电容为目标,对电极材料进行了一系列优化。通过电沉积法对电极材料进行了掺杂改性,成功的提高了电极材料的电容,从而改善了超级电容器的性能。具体内容如下:1.CQDs/P-Fe2O3电极材料的制备及性能研究本章采用电沉积法在碳布表面生长了Fe2O3,然后通过掺杂P和碳量子点(CQDs)对其改性,形成了CQDs/P-Fe2O3,从而提高了它的电化学性能。CQDs/P-Fe2O3在0.5 A/g的电流密度下,具备优异的比电容(1786.5 F/g)。为了进一步评价CQDs/P-Fe2O3的电化学性能,制备了一种合适的Mn O2阴极材料来组装成超级电容器。组装的CQDs/P-Fe2O3//Mn O2不对称超级电容器(ASCs)具有良好的比电容(290F/g)并且显示出优异的循环稳定性(在1000个循环后电容仅有8.7%的减少,保持率为91.3%)。这表明CQDs/P-Fe2O3具有卓越的电化学性能,非对称超级电容器器件拥有很大的发展前景。2.CQDs/Mn Fe2O4电极材料的制备及性能研究本章采用简单的电沉积法先在碳布表面负载了Mn Fe2O4,然后通过添加十六烷基三甲基溴化铵改变Mn Fe2O4的形貌改善了它的性能,最后通过掺杂CQDs对它进行改性。CQDs/Mn Fe2O4在电流密度为0.5 A/g的情况下,比电容为1129.75 F/g。为了进一步评估CQDs/Mn Fe2O4的电化学性能,合成了一种相匹配的Mn O2阴极材料来组装成超级电容器。组装的CQDs/Mn Fe2O4//Mn O2不对称超级电容器具有较好的比电容(249.17F/g),表现出优异的循环稳定性(在1000个循环后电容仅有6.4%的减少,保持率为93.6%)。以上结果表明,CQDs/Mn Fe2O4具有出色的电化学性能,非对称超级电容器器件拥有很大的发展前景。
其他文献
党的二十大谱写了马克思主义中国化时代化新篇章。从马克思主义中国化视角审视和考察党的二十大,可以发现大会从永恒主题、使命任务、战略部署、主体要求等几个方面对马克思主义中国化诸问题作出了新的阐释、概括和总结,深入揭示了新时代马克思主义中国化的发展规律,指明了新时代马克思主义中国化事业的发展方向。
期刊
基于卟啉的分子作为锂离子电池的负极引起了相当大的兴趣,因为它们具有大的π共轭芳族结构、丰富的具有多电子氧化还原活性的活性位点以及狭窄的HOMO-LUMO间隙。为了提高活性位点的利用率、提高导电性和抑制在电解质中的溶解,本文通过Br功能化的卟啉单体和炔基单体的Sonogashira-Hagihara交叉偶联反应制备了两种卟啉共轭微孔聚合物,研究了其在锂离子电池中的应用,并探索了其电化学机理,主要研究
学位
近年来,化石能源的逐步消耗及由其燃烧导致的环境污染问题,给人类社会带来了巨大的危机。在“碳中和”和“碳达峰”的背景下,开发利用新能源变得极其重要。作为电化学能量存储设备的代表,超级电容器具有高功率密度、快速充放电、低成本以及出色的循环稳定性而受到越来越广泛的关注。二维(2D)过渡金属碳化物、碳氮化物和氮化物,即MXenes,不仅具备2D材料的共性特征如比表面积大、各向异性,而且具备类金属导电性、强
学位
淡水资源紧缺已经成为全球性难题,从雾气中捕获水汽可以缓解干旱地区的缺水问题。大自然中,蜘蛛网、仙人掌、沙漠甲虫等生物均可从雾气中捕获水滴,受自然界中这些生物的启发,科研人员通过各种方法构建仿生结构,展开了大量的研究,但常规仿生方法成本高昂,制备过程繁琐。3D打印制备仿生材料,不仅可批量化制造,还可以在仿生结构上可以做出很多的优化设计,利用捕雾结构的优势进一步提升集水效率。本文采用3D打印技术,设计
学位
铜及铜合金带材广泛应用于电子集成电路行业,随着5G产业的快速发展,集成电路引线框架、高速背板材料要求更高的拉伸强度和导电率。Cu-Cr-Zr合金具有优秀的拉伸强度、良好的导电性和高温稳定性,在电子行业得到了广泛应用。为满足5G产业产品的小型化、高性能和集成化标准要求,迫切需要开发高强度、高导电Cu-Cr-Zr合金带材。本文提出等通道挤压(ECAP)+低温轧制(Cryogenic Rolling,C
学位
铌镁酸铅-钛酸铅(PMN-PT)基压电陶瓷是典型的弛豫铁电体,具有较高的介电常数、电致伸缩系数和热释电系数,是制造致动器、微位移驱动器、多层陶瓷电容器、电学器件、光学器件的理想材料。稀土元素掺杂可以有效提高PMN-PT基陶瓷的电学性能。然而,采用传统的混合氧化物烧结工艺制备的陶瓷往往产生大量焦绿石晶相,劣化了陶瓷的电学性能。本工作选择稀土元素Sm,La作为掺杂元素,分别研究了三方/四方晶相混合共烧
学位
自2009年Adachi课题组报道热活性延迟荧光(Thermally active delayed fluorescence,TADF)材料在有机电致发光二极管(Organic light-emitting devices,OLED)中 的应用 以来,TADF 材料因其 100%的内量子效率、无重金属原子等优势,获得了科研工作者的广泛关注。随着众多学者对TADF材料的不断开发,基于TADF材料的器
学位
学位
中共二十大是一次高举旗帜、凝聚力量、团结奋进的大会,为中国特色社会主义参政党实践提供了新的广阔舞台。团结引领广大盟员认真学习宣传贯彻中共二十大精神,要坚持以学为先,在感恩奋进中以更高政治站位谱好理想信念“共鸣曲”;要坚持以行为重,在真抓实干中以更强履职能力绘好中心大局“全景图”;要坚持以党为师,在学习实践中以更严制度举措筑牢自身建设“主阵地”。
期刊
习近平总书记在中国共产党第二十次全国代表大会上作的报告,向世界展现出四种振奋人心的力量。坚持推进马克思主义中国化时代化的中国共产党是新时代伟大变革的核心力量;自我革命精神确保党永远不变质、不变色、不变味,是中国共产党跳出治乱兴衰历史周期率的第二个答案,展示了新时代中国共产党的精神力量;新时代中国在经济、社会、科技和教育等诸多领域的成就,展现了中国共产党领导下的全过程人民民主的制度力量;在中国共产党
期刊