海面溢油燃烧行为及效率提高方案实验研究

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:stong_sz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当海上油气运输及勘探开发作业发生溢油事故时,如何安全高效地清除海面溢油是研究的关键。就地燃烧法已被证明是一种行之有效的溢油处理方法,溢油燃烧时的行为及效率是研究的重点。在海面溢油处理过程中,油池被海水环绕,与传统受限容器油盘池火边界条件具有显著差异。因此,开展小尺度模拟实验,研究宽阔水面油池火燃烧行为和燃烧效率提高方法,能够为使用就地燃烧法处理海面溢油提供基础数据支撑和方案建议。本文研究内容、成果及结论如下:针对宽阔水面油池火的火焰特性,提出了无量纲的火焰长度、倾角及拖曳长度预测模型。通过小尺度实验的方法,围绕宽阔水面油池火的燃烧行为进行了研究。根据实验获得的火焰行为数据,提出了一种考虑初始燃料厚度的改进Thomas模型,能够较好地预测池火阶段火焰长度变化。根据火焰倾角的形成机理提出了包含无量纲热释放率,风速和火焰温度的宽阔水面油池火火焰倾角正切值预测模型。根据火焰拖曳现象形成的物理机制,提出了考虑无量纲热释放速率的火焰拖曳长度预测模型。根据外加装置以增强火焰对油层热反馈的方法,研究外加插板对水面油池火燃烧行为及效率的影响,并设计了海面溢油燃烧效率提高装置。当外加装置高度合适时,能够接受大量火焰热量并将其经由插板传递给油层,进而提高燃烧速率和效率。通过插板传热机制提出了外加插板的池火燃烧速率预测模型,其中包含燃料温度和插板温度,可以方便地计算得到预期的外加插板后理论燃烧速率。设计了使用+型插板的海面溢油燃烧效率提高装置,将高导热性材料制成的插板通过浮力底座的方式放置在溢油层中,以增强火焰热反馈的方式提高溢油燃烧效率。根据诱导池火形成火旋风以增强池火空气卷吸强度的方法,研究水面火旋风对池火燃烧行为及效率的影响,并发现蓝色火旋风能够实现水面池火的清洁燃烧。形成水面火旋风能够显著增大池火燃烧速率,但由于更强的对空气散热以及末期剧烈沸溢造成的大量热量散失并未表现出对池火燃烧效率的增益效果。在火旋风燃烧末期,接近燃料层表面的位置开始出现蓝色火焰,特定条件下该蓝色火焰能够保持存在并稳定燃烧,其中当庚烷为燃料时燃料供应速度应在0.01g/s至0.03g/s之间。产生蓝色火旋风能够有效降低海面溢油燃烧产生的空气污染及有害气体排放,对于进一步降低溢油危害具有重要意义。
其他文献
海水管路系统是船舶的重要组成部分,担负着消防、冷却、压载等重要作用。海水管路系统服役于动/静海水交替的严酷腐蚀环境,腐蚀泄漏问题突出,且具有隐蔽性,一旦发生腐蚀穿孔,严重威胁船舶的安全可靠运行。铜合金由于具有良好的机械性能、加工性能和耐海水腐蚀性能,被广泛应用于船舶海水管路系统,但腐蚀问题仍然存在。海水管路系统由铝青铜阀门、锡青铜阀门、铜镍合金管路、碳钢法兰等多金属构件组成,电偶腐蚀是导致铜合金管
学位
含氢气体的输送使管线钢面临氢脆失效的风险,而焊接接头存在严重的组织不均匀和残余拉应力,更容易发生氢脆。鉴于环境氢脆往往起裂于材料表面,超声冲击能够在改善表层组织的同时引入压应力,有望降低管线钢的氢脆敏感性。因此,本文采取超声滚压辅助加热的方式,对X80钢焊接接头中氢脆敏感性最高的粗晶区进行表面强化处理,综合分析超声处理对其环境氢脆的影响规律及作用机理。以X80钢焊接热影响区粗晶区为研究对象,通过环
学位
随着全球工业化进程的加快和能源需求的增加,含有硫化氢的高腐蚀性油气田逐渐被开发利用。Incoloy825/X65双金属复合管可充分发挥两种材料的优势,能同时满足耐腐蚀性、力学性能和成本效益的要求,因此被广泛应用于油气输送领域。但由于双金属复合管焊接接头存在元素扩散、组织不均匀及应力梯度大等特点,对复合管的耐腐蚀性造成了影响。因此论文对含湿硫化氢环境中Incoloy825/X65双金属复合管焊接接头
学位
随着我国管道工业的发展,管道泄漏、局部减薄等一系列安全问题频繁发生,在役焊接具有修复时间短、速度快、对环境污染小等优点,烧穿失稳是其首先要解决的问题。在役焊接烧穿受到焊接工艺参数、管道结构因素及内部介质因素的影响,是一个结构场、温度场、应力场等多场耦合下的动态过程,早期研究烧穿失稳判据考虑的因素不够全面,本课题在综合考虑温度场、结构场和应力场的基础上,采用剩余强度法和高温塑性失效准则,综合研究在役
学位
CO2腐蚀是油气开采和输送过程中最常见的腐蚀形式之一。在油气输送过程中,管道内流体的流动是影响CO2腐蚀过程的重要因素。如何通过模拟集输管线内部的动态腐蚀环境还原流体流动对高温高压管线CO2腐蚀的影响机制原貌,是腐蚀科学和工程领域共同关心的问题。本文以X65管线钢作为研究对象,采用自行设计的高温高压流动腐蚀环路模拟集输管线内部的动态腐蚀环境,通过腐蚀模拟实验、高温高压原位电化学测试及现代表面分析技
学位
2205双相不锈钢最初由瑞典Sandvik公司于20世纪70年代针对油井管及其他管线要求开发,为中合金型双相不锈钢的代表品种,兼具铁素体与奥氏体不锈钢的优良特性,综合耐腐蚀性能优越。以2205双相不锈钢作为复合管内衬层,X80钢为基层,可使复合管具有较高的承载能力,优异的耐孔蚀性能,并节省工程成本。随油气开采、运输环境的越发复杂,2205/X80双金属复合管在石油天然气等行业得到广泛的发展。由于2
学位
随着新一代永磁材料的诞生后,能否科学、有效利用磁效应逐渐受到人们的关注。目前,关于磁场在地热水中主要用于防垢、抑垢。而对于地热水环境中的金属的腐蚀电化学研究较少。因此,本文采用传统电化学方法、表面分析技术及微电极阵列技术,研究了不同磁场强度对A3碳钢、316L不锈钢和超级铁素体不锈钢S44660三种不同性质的金属材料在地热水介质中的腐蚀规律。为处于地热水环境中的金属管道等设备提供一种新型防腐方法。
学位
双相不锈钢发展至今,因其奥氏体和铁素体两相共存特点,具有良好的抗氧化性、力学性能及耐腐蚀性能,在石油化工、海洋工程等行业得到广泛的应用。2205双相不锈钢作为最常用的双相不锈钢,焊接的关键技术问题是热影响区两相比例的控制。目前,国内外对2205双相不锈钢焊接热影响区组织的热模拟研究甚少。本文以2205双相不锈钢管道为研究对象,首先,采用Gleeble 3500热模拟试验机对2205双相不锈钢热影响
学位
超级电容器作为一种新型储能器件,由于功率密度高、充电时间快、使用寿命长和安全环保等优点,始终处于研究的前沿。石墨烯,一种独特的二维结构碳材料,具有优良的物理和化学性质:高载体流动性,高光学透射率,高杨氏模量,良好的柔韧性,极高的比表面积等,与超级电容器对电极材料的要求十分符合。自从2004年石墨烯被发现以来,石墨烯以及石墨烯衍生物作为超级电容器的电极材料获得了广泛关注。本文利用实验室改进的Humm
学位
腐蚀过程中的金属,其表面会形成多个大小不一的局部阴阳极,局部阴阳极的尺寸通常在微米尺度,甚至纳米尺度,而传统的玻璃pH电极与电化学技术无法实现在腐蚀过程中同时对金属不同位置的pH值进行原位在线监测,因此需要发展新的测试装置和方法来满足该需求。本文针对上述问题,围绕实时监测金属在腐蚀过程中各微区pH的值需求,在研究适用于金属局部腐蚀的pH监测系统方面做了一系列工作。通过对比研究循环伏安法,恒槽压法和
学位