使用购物中心通用设计评价标准对购物中心评估研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:jtgdz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通用设计理念是一种设计风格,它提倡为满足所有人而设计,不论使用者的能力和社会人口特征如何。通用设计被视为社会可持续性发展的一个要素。购物中心作为主要的休闲活动场所之一,可以根据通用设计理念进行设计和评估,提高所有购物者的可用性。目前,在商场的设计准则中,并没有明确的通用设计定义。因此,基于通用设计理念的设计和评估指南非常有限。本研究通过对购物中心通用设计特征概念成分的转化和定义,弥补了这一知识上的不足。此外,本研究还开发了一个广泛吸取购物中心设计元素名为购物中心通用设计评价体系的评价标准。并将这个标准投入到一些不适合为残疾人服务的购物中心进行测试,比如伊拉克苏莱曼尼亚市的购物中心。关于通用设计理念转化为购物中心设计标准的问题,我们进行了全面的文献综述,以建立一些概念模型。为了验证这些模型,本研究通过问卷调查收集数据,并使用结构方程模型对数据进行模型适应度检验。这些模型帮助研究者识别购物中心设计的重要因素及其重要性,并引导完成本研究的主要目标,即开发购物中心通用设计评价标准。本研究在苏莱曼尼亚的6家购物中心(家庭购物中心、马吉迪购物中心、城市中心购物中心、城市之星购物中心、卡索购物中心和兰德画廊购物中心)进行了适用性、效度和信度测试。信度和效度测试结果表明,大部分问卷具有极高的信度和效度。这项研究的创新之处在于提出基于通用设计理念的购物中心的基本设计标准,开发和验证基于通用设计理念的模型来设计和评价购物中心,开发购物中心通用设计评价体系作为商场评估的系统方法,确保商场的普及性。使用购物中心通用设计评价标准评估的结果表明,该标准能够识别出购物中心在设计普遍性方面的缺陷。此外,通用设计可协助设计从业人员及研究人员对商场进行设计及评估,以确保所有顾客得到公平的服务。
其他文献
碳达峰、碳中和是我国的重要战略目标,这关系到全球气候问题以及我国的能源安全、产业升级、国际竞争力等,具有极其重要的意义。CO2的捕集、利用和封存(CCUS)是实现CO2减排的有效手段。氨基功能化固体CO2吸附剂具有众多优点,在CO2捕集中具有巨大的潜力。但是其吸附、脱附速率限制了其性能的进一步提高。本论文从孔道结构、孔道内有机胺层的分布以及有机胺层的分子结构这三个方面,调控了吸附剂的结构,提高了吸
学位
量子相干性是量子力学的一个基本特性,也是区分量子物理和经典物理的一个典型特征,它描述的是量子体系处于不同态叠加的性质。人们发现相干性在很多量子过程中都起着重要作用。比如,在一些量子热力学过程中,相干性对功的提取和热机的制冷效果有着显著的影响;某些多体量子体系的量子相变可以通过量子相干性度量来识别;尤其在量子信息处理过程中,相干性是量子并行计算的重要基础,此外,在量子通道识别以及参数估计等任务中,相
学位
超冷分子的制备及其应用是当前原子与分子物理学领域的一个研究热点。光缔合作为制备超冷分子的有效方法受到了研究人员的广泛关注,碱金属原子的光缔合是光缔合研究工作中非常重要的一部分。本论文采用映射傅里叶网格方法和含时量子波包方法从理论上研究了利用整形脉冲控制超冷133Cs原子光缔合过程,研究了利用短脉冲和外磁场控制超冷39K和133Cs原子Feshbach共振优化光缔合过程。主要内容概括如下:(1)研究
学位
边界等离子体是芯部等离子体和托卡马克装置壁面之间的过渡区,是形成并维持边界等离子体台基区结构、实现托卡马克高约束放电运行模式的关键。同时,边界等离子体直接轰击装置壁面会降低面向等离子体部件的性能并缩短其寿命,相互作用过程产生的杂质通过边界等离子体进入芯部,稀释芯部等离子体,增强能量辐射,最终降低装置约束性能,甚至会导致放电中止。因此,研究托卡马克边界等离子体特性以及其影响因素,对于实现聚变装置高参
学位
研究核子内部的组成结构和部分子碎裂为单个或两个强子的强子化过程仍然是粒子物理具有挑战性的任务。研究这两部分物理的最典型过程是半单举深度非弹散射(SIDIS)过程,一般人们对SIDIS过程应用横向动量依赖的(TMD)因式分解框架,也就是将过程的微分截面分解为微扰计算的部分子截面和非微扰部分。其中非微扰部分包含描述核子结构的TMD分布函数和描述强子化过程的TMD碎裂函数。在实验上,可以通过测量SIDI
学位
当代可持续能源正获得高速发展以有助于减少碳排放,并最终实现《巴黎气候协定》规定的全球温室气体排放目标。其中锂离子电池将发挥重要作用,使2050年之前实现零排放任务成为可能。但令人遗憾的是,现有的电极材料远不能满足新一代技术对电池功率、能量和稳定性的高要求。本论文工作旨在开发智能工程纳米材料作为锂离子电池和锂离子电容器的电极,其目的是为下一代电子器件能源供给提供核心支持。更具体地说,材料的选择基于过
学位
光电催化水分解产氢,将太阳能储存在氢气中,是解决全球化石能源短缺以及温室效应问题的理想途径之一。近年来,科研工作者在p-型半导体及产氢催化剂的研究方面取得了长足的进展,但目前已有的产氧光阳极和产氢光阴极普遍存在光-氧和光-氢转化效率低、稳定性差、以及光阳极和光阴极光电催化性能不匹配、工作介质不兼容等问题,限制了光电催化水分解技术的规模化应用。因此,仍亟需研发高效、稳定、廉价且性能匹配、工作介质兼容
学位
超级电容器具有高电容量及高倍率性能的优点,是一种很有应用前景的储能装置。设计具有良好的物化性能和结构的高效电极材料对下一代高性能超级电容器的研发具有重要意义。石墨烯(Gr)、碳纳米管(CNT)和碳纳米线圈(CNC)等碳纳米材料及其复合材料具有优异的导电性、大比表面积、高稳定性、易加工和低成本等优势,是极具潜力的电极材料。然而,Gr的堆叠和CNT的团聚降低了其比表面积,从而限制了其表面赝电容纳米结构
学位
为应对气候变化,我国提出二氧化碳(CO2)排放总量要在2030年前达到峰值,并于2060年前实现碳中和。利用氢气(H2)将CO2转化为甲醇是减少CO2净排放的重要途径。氧化铟(In2O3)凭借其表面氧空位可以有效活化CO2和H2,具有优异的CO2加氢制甲醇性能,并可以耦合分子筛进一步将生成的甲醇转化为烃。然而In2O3催化活性低、易烧结等缺点限制了其CO2加氢催化性能的提升。本文以不同晶相In2O
学位
本论文报道了利用曼尼希反应、格罗布克-布莱克本-比安奈姆反应和康拉德-林帕赫式多组分反应(MCR),高效绿色地合成几种不同类型有机化合物的方法,包括β-氨基酯、咪唑并吡啶和吡啶并嘧啶-4-酮。并通过理论计算对其中β-氨基酯的形成机理进行了理论研究,同时对所得到的一些目标产物进行了生物学活性测试,以用于药物发现中的药物筛选与对接研究。内容和结果如下:首先,建立了一种新型、高效、简便的方法,即采用PP
学位