羧酸类镉,钴金属配合物的合成及其在染料吸附,荧光检测及电池充放电中的应用

来源 :内蒙古工业大学 | 被引量 : 0次 | 上传用户:zfx523
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
配位聚合物以其丰富的拓扑结构和诱人的应用前景受到了人们的广泛关注。合理的选择结构合适的配体和中心金属离子对构筑新颖配位聚合物起着决定性的作用。本文选用三种羧酸类配体,苯均四甲酸(H4btec)、1,4-萘甲酸(1,4-ndc)、1,4,5,8-萘四甲酸(H4ntc)为第一配体,含氮杂环类配体邻二氮菲(1,10-phen)为第二配体,硝酸镉,硝酸钴为金属盐。通过水热合成方法在适宜的条件下,得到了[Cd/Co(btec)(phen)](简写为Cd/Co-MOF)、[Cd/Co(1 , 4-ndc)(phen)](简写为14-Cd/Co-MOF)、[Cd(ntc)(phen)](简写为1458-Cd-MOF)、[Co(ntc)(phen)](简写为1458-Co-MOF)、[Cd/Co(ntc)(phen)]简写为(1458-Cd/Co-MOF)5种新型配位聚合物对其进行了红外光谱(IR)、热重分析(TG)、电镜扫描、能谱分析以及粉末X-射线衍射的表征,并根据配位聚合物结构特点对其进行了吸附效果研究、荧光分析、电化学应用,主要取得以下结果:
  利用伪一级、伪二级、颗粒内扩散、Langmuir、Freundlich和Temkin等吸附模型研究了14-Cd/Co-MOF的吸附性能并和已知的[Cd(1 , 4-ndc)(phen)](简写为14-Cd-MOF),[Co(1,4-ndc)(phen)](简写为14-Co-MOF)进行比较分析吸附机理。结果表明14-Cd/Co-MOF可以很好地吸附阴离子染料甲基橙(MO)刚果红(CR),吸附平衡的理论值在14-Cd-MOF,14-Co-MOF之间。通过吸附机理分析得到由于其表面与阴离子染料的酸碱相互作用可能存在Cd2+或Co2+位点作为路易斯酸以提高吸附量并且相比于π-π堆积作用和氢键更起主导作用。
  荧光性质的研究表明Cd/Co-MOF、14-Cd/Co-MOF、1458-Cd-MOF对水溶液中的Fe3+具有高度选择判别能力。使用Stern-Volmmer方程计算了Fe3+对Cd/Co-MOF、14-Cd/Co-MOF、1458-Cd-MOF的猝灭常数,其中Fe3+对Cd/Co-MOF有两段不同的荧光猝灭常数第一段KSV=8.42×103Lmol-1,第二段KSV=4.40×105Lmol-1,比已知的[Cd(btec)(phen)](简写为Cd-MOF)和[Co(btec)(phen)](简写为Co-MOF)对Fe3+的选择性好很多。通过电化学检测得到[Cd/Co(1,4-ndc)(phen)]还具有充放电性能,可以作为电池应用。
其他文献
正交频分复用(OFDM)技术具有均衡简单,抗频率选择性强,频谱效率高等众多优点,是当今无线通信的主流技术之一。而在实际通信中,接收端不经常能知道发端加给信号的预知信息,因此,对非合作通信系统的研究很有意义。  本文以DVB-T通信系统为例,完成对非合作DVB-T系统的接收端需要实现的采样钟同步,定时误差同步及载波同步三个技术点,在保证接收端未用到发端任何已知参数的前提下,完成对DVB-T系统进行正
癫痫是最常见的脑部疾病之一。在临床脑电图检查中,识别脑电图中是否出现癫痫样放电尤为重要。通常由专家人工阅读分析被怀疑患有癫痫或癫痫患者的脑电图记录,从中识别出不规则的、与癫痫相关的瞬态特征波形。这些短暂的瞬态波形又被称为癫痫样放电,它们持续几十到几百毫秒,通常分为7种类型。由于临床使用的头皮脑电图包含大量的噪声,导致癫痫样放电的自动检测成为了一个困难的任务。  为了解决这一问题,本文分析了640组
双层堤基是江河上的堤坝工程常见的地层形式,即上面为弱透水性的黏性土覆盖层,下面为强透水性的砂层。双层堤基汛期受承压水的顶托,常在堤后出现流土和管涌等险情。其中,管涌破坏是绝大多数此类堤基发生渗透破坏的形式,主要表现为堤后弱透水覆盖层薄弱处,在高水头差作用下发生破坏先形成管涌出口,后发展成向上游扩展的集中渗流通道。管涌破坏的内部侵蚀机制急需理解,多年来针对集中渗流通道发展变化的研究已取得一定的成果,
学位
鉴于国内越来越多的盾构隧道下穿机场的发展现状,机场交通与城市地铁相结合的新型换乘方式,逐渐成为了我国轨道交通的发展趋势。本文在依托成都轨道交通10号线二期工程的基础上,通过资料调研、理论分析以及数值模拟等综合研究手段,采用时域和频域分析方法,研究了盾构隧道下穿机场道面工程中,飞机荷载对机场道面、地层、隧道结构的动态响应,最后运用敏感性分析法综合分析各因素对隧道应力的影响。本文的主要研究内容如下: 
学位
近几十年来,随着全球人口基数的增多和工业的迅速发展,对能源的需求量越来越大,化石能源的大量开采和低效利用使能源短缺问题越来越严重并引发了一系列的环境污染问题。二氧化碳是引起温室效应的主要气体,降低空气中二氧化碳的浓度是减缓温室效应的有效途径也是当代学术界研究的热点和挑战。基于以上问题,本文以芹菜茎作为碳源,采用不同致孔剂,制备了一系列可以有效吸附CO2气体且在298K,1bar下对CO2/C2H2
随着全球经济的快速发展,有限的煤炭、石油等化石能源已经成为了制约社会可持续发展的主要因素之一。氢气作为一种高效的清洁能源,将在21世纪的能源舞台上扮演重要角色。目前工业上制氢主要通过高温重整反应将甲烷转化成一氧化碳和氢气。甲烷是天然气及页岩气的主要成分,储量丰富。通过甲烷重整制氢可实现甲烷的高值转化利用。由于大气中排放的CO2越来越多,并带来了一系列环境问题,通过CO2甲烷化以及甲烷CO2重整可以
能源短缺和环境污染两大问题已经严重制约了人类社会的发展,半导体光催化技术可利用太阳能分解水产氢和产氧以及降解有机污染物,是一种潜在的太阳能转化技术。其中,设计并合成高效的可见光产氢产氧材料成为光催化领域研究的重点内容。在众多半导体材料中,单斜相BiVO4是可见光催化产氧明星半导体材料,因具有合适的价带结构、良好的化学稳定性等优点,在光催化领域受到了广泛的关注。然而,BiVO4由于自身光生电子和空穴
由于人类对于化石能源的大量使用,不仅导致大量的温室气体CO2的排放,而且会造成能源的短缺。另一方面,CO2是一种无毒、廉价、丰富的C1资源,可以用于各种化学品的生产。对CO2有效的转化利用既能够解决环境问题,又能够缓解能源短缺的现状。目前,CO2的资源化利用技术包括热化学还原、光化学还原、光电催化还原、电化学还原等方法。电化学还原二氧化碳(CO2RR)技术一种利用间歇可再生电力转化CO2的绿色便捷
本文以芦笋老茎为原料,通过制备总黄酮、不溶性膳食纤维、可溶性膳食纤维以提高其附加值,为芦笋老茎的资源化利用提供参考。采用超声辅助法和热回流法提取总黄酮,通过单因素实验和正交试验优化超声辅助法提取总黄酮的工艺,并利用AB-8型大孔吸附树脂纯化总黄酮,初步鉴定了总黄酮的成分并评估了其抗氧化性能;分析了总黄酮提取前后膳食纤维含量的变化,以微波辅助碱法提取膳食纤维并评估了其性能,形成了一套芦笋老茎综合利用
学位
锂离子电池由于能量密度高、循环寿命长、对环境友好,被认为是便携式电子器件和新能源汽车最有应用前景的储能装置之一。而负极材料作为锂离子电池不可或缺的一部分,它的储锂能力大小也直接决定着整个电池的容量大小。商业化锂离子电池的负极材料以石墨碳材料为主。虽然成本较低、导电性和安全性都比较好,但是理论容量仅有372mAhg-1,难以满足现代社会对高能量密度的要求。因此,积极开发储锂能力大、安全稳定性好的锂离