基于正弦响应的线性连续时间时延系统参数辨识

来源 :江南大学 | 被引量 : 0次 | 上传用户:abchkiesh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
受传输介质、周围环境以及人为因素的影响,控制信号在传输过程中难免会出现时延.时延的出现严重影响系统的控制品质,甚至稳定性.要对时延系统实行有效控制,就必须获得系统的参数.因此研究时延系统的参数辨识方法具有重要理论意义和应用前景.本文以线性连续时间时延系统为研究对象,基于系统正弦响应的观测数据,研究其参数辨识方法,主要内容如下:1.对于线性系统,其正弦响应是一个与输入同频率的含迟延相位的正弦信号,即幅值不同的正弦信号与余弦信号的线性组合.因此针对一阶线性连续时间时延系统,分别给定不同频率的正弦信号.通过测量系统正弦响应的观测数据,推导出了估计正弦响应中正弦余弦分量幅值的随机梯度算法,然后根据获得的幅值参数,推导了梯度迭代算法来辨识原系统参数.联立两个算法,得到了一阶系统的随机梯度和梯度迭代算法,再引入多新息辨识理论,提出了多新息随机梯度和梯度迭代算法.2.针对二阶线性连续时间时延系统,施加不同频率组合正弦信号,其输出响应是多个不同频率的正弦响应的线性组合,即频率不同、幅值不同的正弦信号与余弦信号的线性组合.通过测量系统正弦响应的观测数据,提出了估计正弦响应中正弦余弦分量幅值的随机梯度算法和多新息随机梯度算法,然后根据获得的幅值参数来辨识原系统参数,提出了梯度迭代算法.联立两部分算法,得到了二阶系统的随机梯度和梯度迭代算法以及多新息随机梯度和梯度迭代算法.3.将一、二阶系统的辨识方法推广到高阶系统,针对高阶线性连续时间时延系统,施加不同频率组合正弦信号,通过测量系统正弦响应的观测数据,来辨识系统正弦响应中正弦信号与余弦信号的幅值,再根据幅值参数与系统参数之间的关系求解系统参数,推导得到了针对高阶系统的随机梯度和梯度迭代辨识算法,然后引入多新息辨识理论,提出了针对高阶系统的多新息随机梯度和梯度迭代辨识算法.综上所述,本文基于系统正弦响应的观测数据,采用分阶段辨识的思想,对线性连续时间时延系统的辨识问题进行了由浅入深的讨论,给出的每个算法的辨识步骤、流程图和对应的仿真实例,最后根据仿真实验效果来说明算法的有效性.论文的最后对每个部分进行了总结和展望,并对线性连续时间时延系统在辨识中还需要解决的一些问题和值得研究的其他方面进行了简单的介绍.
其他文献
在复杂工业过程中,对运行中的某些关键变量进行实时监控具有重要的意义,然而受到技术条件有限、检测装置昂贵以及现场环境恶劣等不利因素的影响,这些变量难以利用硬件传感器检测得到。在这种情况下,软测量技术得到应用,通过训练集构建数学模型,实现对新样本质量变量的实时估计。软测量技术通常需要大量有标记样本才能完成高精度模型训练,然而在实际工业过程中常常是无标记样本数量较多,有标记样本数量稀少,且获取成本高。因
音频携带了城市中大量关于日常环境、生活场景和物理事件的信息。通过深度学习方法智能分类识别出各个声源并提供相应的运用与服务,在构建智慧城市中具有巨大的潜力与应用前景。其被广泛运用于噪音监控、城市安防、多媒体信息检索、智慧工厂等方面。但当前已有的城市音频分类模型仍存在分类准确率不够高、泛化能力不够强以及噪音鲁棒性较弱等问题,针对上述问题论文进行了如下研究:(1)为解决城市音频分类领域中现有模型分类准确
多自主体系统协调控制是近几十年的热门研究领域,其研究成果大量应用于无人机编队飞行、无线传感网络和多机器人协调控制等工程领域。一致性控制是多自主体系统协调控制的分支研究领域,控制目标是通过自主体之间的控制协议,利用局部的信息,使所有自主体状态趋于一致。而固定时间一致性控制,要求所有自主体在固定时间内实现状态一致,比传统一致性控制收敛速度更快。在实际工程环境中,干扰和非线性动态会影响系统稳定性,是不可
孪生支持向量回归机(Twin Support Vector Regression,TSVR)是一种解决回归问题的机器学习算法。由于TSVR只需求解一对规模较小的二次规划问题,其训练效率高于支持向量回归机,因此TSVR已逐渐成为机器学习领域的研究热点。但是,目前TSVR的训练算法大部分都只是离线训练算法,无法高效处理在线增量学习问题。本课题致力于提升TSVR三种变体在增量环境下的训练效率,设计其相应
近年来,多自主体系统一致性问题已成为学术界的研究热点,并在传感网络、航天探测以及电力能源等领域得到了广泛应用。一致性问题是指利用自主体的局部交互信息设计合适的控制协议,使所有自主体的状态最终达到相同。为了节约有限的资源,事件触发控制策略被应用到一致性协议中。在事件触发控制中,只有当测量误差触发函数超过预设阈值时,自主体才进行通信和控制器更新。为顺应通信环境的要求,事件触发一致性问题的研究逐渐从固定
视频行为识别就是在不需要人为干预的情况下,综合利用计算机视觉、模式识别、图像处理、人工智能等诸多方面的知识和技术对摄像机拍录的图像序列进行自动分析,实现动态场景中的人体定位、跟踪和识别,并在此基础上分析和判断人的行为,其最终目标是通过对行为特征数据的分析来获取行为的语义描述与理解。视频行为识别技术可用于自动驾驶、人机交互、智能安防监控、智能家居监护等领域。因此,对视频行为识别的研究有着重要而广泛的
迭代学习控制是一种广泛应用于执行重复任务的高性能控制方法,其直接根据之前批次的系统输入输出信息不断修正更新当前批次的控制输入信号,最终在有限时间内实现对参考轨迹的完全跟踪。将优化理论与迭代学习控制技术相结合,能够得到最优型学习控制器以实现快速跟踪。然而在实际的工业过程中,系统输出往往不需要跟踪完整的参考轨迹,只需要在某些特定时间点处跟踪上给定的参考值。例如机器人的“取”和“放”操作,只需要专注于拾
间歇过程具有生产灵活的特点,广泛应用于化妆品、食品、药品等领域。迭代学习模型预测控制(ILMPC)兼具迭代学习控制(ILC)和模型预测控制(MPC)的优点,具有良好的抗干扰能力和约束处理能力,在间歇过程关键过程变量的轨迹跟踪中得到了广泛的应用。然而,ILMPC的预测模型是建立在原始变量空间的,变量间的共线性和高维性使得预测模型的开发变得困难和耗时。其次,ILMPC也存在在线计算量过大的问题。并且,
切换正系统由有限个正的子系统以及一组切换信号组成。切换正系统既有切换系统复杂的动力学行为特性又具有正系统独特的状态非负特性,因此针对此类系统相关控制问题的研究也相对棘手。切换正系统在控制领域应用广泛,并与经济、生物、通信等众多实际生活领域密切相关,因而引起了学者们的极大关注。实际工程应用中,系统短时间内的动态行为变化至关重要,很多系统满足无限时间区间的稳定性能却不能满足短时间区间内的性能指标。典型
随着社会的快速发展,人们的生活水平逐渐提高。但是与此同时,人们不规律的生活方式也使得更多疾病的发生,肿瘤甚至也变成了一种常见的疾病。脑肿瘤是常见的恶性肿瘤之一,其致死率较高,目前只有通过手术或放疗来治疗。因此,脑肿瘤的早期诊断对于改善患者的病情至关重要。核磁共振成像(Magnetic Resonance Imaging,MRI)可以帮助医生观察到病人大脑内部的情况,迅速地确定病灶区域。但是脑肿瘤具