地震-风共同作用下斜拉桥索塔易损性分析

来源 :郑州大学 | 被引量 : 0次 | 上传用户:ming2331
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
斜拉桥跨度大、索塔高度高,地震、强风等灾害对斜拉桥的安全性影响较大,斜拉桥抵抗多灾害能力已成为研究的热点之一。本文以某大跨斜拉桥为例,通过静动力等效建立索塔有限元模型;采用易损性方法,进行索塔地震易损性及风灾易损性分析;考虑地震、风作用方式及风速对易损性的影响,研究了地震-风共同作用下斜拉桥索塔多灾易损性。本文的主要研究内容如下:(1)以斜拉桥全桥模型静、动力特性为参考,考虑斜拉索及主梁的影响,采用等效刚度法及附加质量法建立索塔非线性有限元模型,索塔动力响应与全桥状态下索塔基本一致。(2)采用易损性分析方法,确定索塔损伤指标,通过XTRACT进行了索塔各截面弯矩曲率分析,进而基于OpenSees非线性时程分析,研究了索塔易损性。结果表明:8度设计地震作用下,索塔未发生明显损伤;罕遇地震作用下的轻微损伤的超越概率均在15%以下,极罕遇地震作用下最大达到44%;设计、罕遇及极罕遇地震作用下,索塔未发生明显的中等损伤,基本不会发生严重损伤和完全破坏。(3)基于谐波叠加法,模拟了索塔不同高度的脉动风速,根据规范转化为集中力时程曲线并进行时程分析,研究了不同风速下的索塔位移响应,并进行了索塔风灾易损性分析。结果表明:设计基准风速作用下,索塔发生损伤概率很小,轻微损伤的超越概率最大约0.2%,设计状态索塔不会发生风致损伤。(4)通过对设计、罕遇及极罕遇地震作用与不同重现期风速共同作用下斜拉桥索塔非线性时程分析,研究地震-风共同作用下索塔内力及塔顶位移,并进行了索塔多灾易损性分析。结果表明:地震-风共同作用会增大索塔动力响应,使索塔损伤更为严重,但风作用对索塔响应的影响随地震强度增大而减小;风速越大,共同作用下索塔不同损伤状态的超越概率越大,且超越概率随风速增大而增长;8度罕遇地震作用下,索塔轻微损伤的超越概率为14.58%,考虑设计基准风速共同作用时,其超越概率约23%,地震-风共同作用下索塔易损性明显增大。
其他文献
学位
湘江流域是我国十分重要的生态系统服务功能区,湘江流域的产水量对于维持流域生态系统安全和区域内人类福祉具有重要意义。但随着全球气候变暖以及人类活动干扰的不断增强,湘江流域面临着巨大的生态环境压力,使水资源出现季节性和地区性的匮乏,并经常出现一定程度的旱情,这不仅严重影响了人民群众的生产生活,还严重影响流域的生态,导致流域生态系统服务功能的下降。因此厘清湘江流域产水量的时空演变特征及其影响因素,能更好
学位
门式起重机具有作业能力强、通用性广等优点,主要用于一些大型仓库、港口码头以及室外的货场等。然而起重机的传统设计方法需经过一系列的产品制作流程,设计效率低,生产周期较长,因此引入虚拟样机技术实现起重机的虚拟开发流程,缩短生产周期,节省社会资源。本文根据门式起重机的结构特点,采用虚拟样机技术建立门式起重机虚拟样机模型仿真模拟各工况的运动,以此来推测物理样机的动态特性。主要研究内容如下:(1)基于MG3
学位
纳米纤维素具有可再生、可生物降解、比强度高、表面易于修饰等优异特性,成为增强聚乳酸(PLA)等可生物降解聚合物的理想选择之一。但纳米纤维素较强的亲水性、较差的热稳定性一直是限制其在疏水性聚合物中应用的主要因素。为了改善纳米纤维素与PLA基体之间的界面相容性,需要对纳米纤维素进行表面改性,但多数研究是采用先制备纳米纤维素后改性的两步法,存在周期长、步骤繁杂的问题。本论文提出采用机械化学法,以3-氨丙
学位
柔性透明导电薄膜(FTCFs)对于新兴的柔性电子器件至关重要,其在柔性太阳能电池、发光二极管、超级电容器、触控面板、智能窗户等领域广泛应用。目前大规模使用的透明导电薄膜(TCFs)主要是由氧化铟锡(ITO)制备的,但是由于金属铟的储量较少,导致由其制备的TCFs价格较高。其次,ITO的机械脆性也使其难以满足柔性电子器件的要求。因此,近些年许多ITO的替代材料被开发出来。在众多替代材料中,金属网格因
学位
水资源是高质量发展的基本依托,提高水资源利用水平,缓解水资源短缺对经济社会发展的制约,探索出高质量发展路径,是实现人与自然和谐共生发展模式的有力支撑。黄河河南段在黄河重大国家战略中发挥着重要作用,如何在水资源约束和高强度人类活动影响下探索出黄河河南段高质量发展路径,是黄河重大国家战略顺利实施的前提。因此,开展水资源利用水平与高质量发展路径优选方法研究,对促进黄河河南段乃至黄河流域的高质量发展进程具
学位
链刚性与强烈的π-π相互作用决定了共轭高分子可形成不同尺度的结晶结构,通过改变共轭高分子聚集态结构可以调控器件的宏观光电性能已成为共识。高分子结晶遵循典型的成核-生长过程,初级晶核尺寸接近薄膜厚度且分子链受限扩散困难,导致高分子超薄膜中不易发生均相成核。由于晶格匹配程度高,自晶种具有很高的成核效率。高分子薄膜中自晶种的密度与分布主要取决于初始结晶结构及空间受限和界面效应影响下片晶熔融与重结晶的竞争
学位
二维材料MXene因其具有丰富的化学性质、高导电性、光电和表面亲水性等特性,在电磁干扰屏蔽、光热转换和太阳能蒸发等领域被广泛关注。本论文以MXene为填料,通过简单的喷涂和浸涂工艺等将其与聚合物材料复合,制备出具有优异性能的多功能MXene基聚合物复合材料,并研究了其在电学和光热等方面的应用。论文具体分为以下三部分:(1)将MXene与聚吡咯(PPy)进行物理混合,得到MXene/PPy油墨后,再
学位
钛合金熔炼工艺中,真空感应熔炼生产的钛合金质量好且成本低,是理想的钛合金熔炼方法,但由于钛合金化学性质活泼,在高温下会与常用耐火材料发生反应,导致在使用真空感应熔炼工艺熔炼钛合金时,出现钛合金侵蚀坩埚并影响钛合金质量的现象。因此,研发一种具有优异高温稳定性以及抗侵蚀性能的新型坩埚材料是钛合金熔炼技术中亟需解决的关键问题。(Ca,Sr,Ba)ZrO3高熵陶瓷具有良好的高温稳定性,并表现出对Ti Ni
学位
氮化铝(Al N)是一种综合性能优异的新型陶瓷材料,其具有高热导率(320W/m K)、良好的耐腐蚀性、高电阻率、高硬度和耐磨性,在电子电力、机车、航空航天、国防、军工、通讯以及众多工业领域都具有广阔的应用前景和广泛的潜在市场。在铝基体表面形成的Al N层不仅能有效地提高其耐磨性能,而且能够拓展铝在半导体等电子行业的应用。传统制备氮化铝层的方法有直流反应磁控溅射法、化学气相沉积、等离子喷涂法、等离
学位