双核离子液体催化合成改性生物基聚碳酸酯研究

来源 :沈阳化工大学 | 被引量 : 0次 | 上传用户:zxd19811219
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
聚碳酸酯(PC)具有优异的综合性能,在建筑、医疗、汽车、电子电器和军工等领域应用十分广泛。传统PC所使用的原料双酚A(BPA)具有类雌激素效应,对人体生殖系统存在危害,而绿色安全的生物基单体异山梨醇(ISB)则被认为是BPA的理想替代品。以ISB为原料合成的聚异山梨醇碳酸酯(PIC)具有优异的热稳定性、透光率和耐磨性,但其合成过程和产品性能仍面临两方面挑战,首先ISB分子内氢键限制了其反应活性,难以获得高分子量的PIC;其次受制于ISB的分子特性,PIC的折射率较低,制约了其在光学领域的应用。针对上述难点,本文开发了新型高效双核离子液体(DILs)催化体系,以碳酸二苯酯(DPC)和ISB为原料,采用熔融酯交换缩聚工艺制备了具有较高分子量的PIC,通过核磁分析了DILs与反应物的相互作用,提出了可能的活化机理。在此基础上,引入双酚单体合成了系列PIC共聚物,成功提高了PIC的折射率,并进一步考察了共聚PIC的热学、力学及亲疏水等性能。本文主要研究成果及结论如下:(1)通过改变阳离子种类以及调节双核离子间烷基链的碳数,设计并合成了一系列DILs,筛选出了催化活性最佳的1,3-(1,4-二氮杂双环[2.2.2]辛烷)丙基二溴盐([C3(DABCO)2][Br]2),在最优反应条件下制备了重均分子量(Mw)达110000 g/mol的PIC。测试发现合成的PIC中内羟基(endo-OH)/外羟基(exo-OH)小于1,表明DILs成功打破了异山梨醇的分子内氢键,活化了endo-OH,平衡了其与exo-OH的活性差异;(2)研究了[C3(DABCO)2][Br]2与反应物的相互作用,发现[C3(DABCO)2][Br]2与反应物形成了阳离子多位点氢键活化作用,解放了ISB中的endo-OH,使其更易被阴离子活化,这使得DIL具有优异的催化活性。结合实验及表征结果,提出了一种阴阳离子多位点协同催化机理;(3)通过引入具有高折射率的双酚单体将PIC的折射率从1.50提高到1.53以上,验证了单体折射率与聚合物折射率变化趋势的一致性,并考察了单体含量与聚合物光、热、机械和亲疏水性能之间的关系,制备了单体含量分别为0%、10%、30%、50%、70%和90%的共聚物。测试结果表明,随单体比例提高,共聚物折射率逐渐升高,最高为1.57;而共聚物Tg逐渐降低,25℃时的储存模量降低了29%,更易于加工;水接触角从72.5°上升到最大97.3°,表现出良好的疏水性。因此,改性后的聚碳酸酯材料满足实际应用性能要求。
其他文献
目前中国水环境问题越来越凸显,污水处理已成为环保的关键举措。污水处理过程是一种典型的非线性、多变量、大滞后、时变系统,其关键水质参数的测量与控制是城市污水处理厂长期平稳、有效运营的关键前提。随着污水排放标准的不断提高,对污水处理操作和运行自动化提出了更高要求。因此对出水关键水质参数的实时监测,保证出水水质指标达到国家要求的排放的标准尤为重要。神经网络是近些年来建模的非常强大工具,因其具有很强的非线
学位
超级电容器作为一种新型的储能设备,因有高功率密度、循环寿命长、绿色环保及快速充放电的特点,填补了传统电容器与电池之间的空白,具有良好的发展前景。根据储能原理的不同将超级电容器分为双电层电容器和法拉第电容器,炭材料是最早用于双电层超级电容器的材料,具有比表面积大、价格低廉和化学稳定性强的特点。生物质材料元素种类多、来源广泛、节能环保且灰分含量少,制备的生物质炭材料适合用作电极材料,使用生物质为炭源制
学位
聚对苯二甲酸乙二醇酯(PET)是常见的聚酯材料,其消费量巨大且难以自然降解,处理不当会对环境造成极大威胁;此外,其合成原料来源于石油资源,因此,PET的循环利用对自然环境的保护及实现碳中和目标具有重要意义。化学回收法中乙二醇(EG)醇解法的反应条件相对温和,经济性高,是实现PET循环利用的有效途径。低共熔溶剂作为一种新兴的绿色溶剂,其在PET醇解领域展现出了广泛的应用前景。咪唑与金属盐可形成低共熔
学位
本文主要用数值模拟手段研究了复杂气固流化系统,气固流化床数值模型主要有TFM和CFD-DEM两种,目前,普遍认为CFD-DEM模型的准确度更高,因为CFD-DEM模型在更微观的尺度上追踪每个颗粒的运动。但是A类颗粒粒径很小,即使是小型实验室流化床装置中,A类颗粒的数目也会非常多,所以直接验证CFDDEM模型模拟A类颗粒流化状态准确性的文献非常少。另外,近年来微型流化床获得了广泛的关注,微型流化床中
学位
报纸
颗粒-流体体系常呈现复杂的时空多尺度结构,硬球-拟颗粒模拟可通过粒子运动和相互作用复现其亚颗粒尺度上的运动细节,而流体粒子与作为壁面的固体颗粒的碰撞是模拟的重要环节。因此,本文首先考察了粒子-边界作用模型的实际效果,发现镜面反射与偏Maxwell速度分布的漫反射组合的滑移漫反射模型不能将体系温度维持在预设值。本文通过能量分析和数值实验解释了该问题并提出了改进方案。在此基础上,本文以重力驱动的硬球-
学位
【目的】探究腐植酸碱性肥料对香蕉生长的影响及促生机制,为腐植酸碱性肥料的研制与推广应用提供理论依据。【方法】采用盆栽试验,研究腐植酸碱性肥料对香蕉生物量、土壤微生物、酶活性、根系活力和土壤氮磷养分含量的影响。【结果】与常规复合肥和无腐植酸碱性液体肥料相比,腐植酸碱性肥料有利于促进香蕉生长,明显增加香蕉生物量、根系活力、土壤脲酶活性、酸性磷酸酶活性、土壤矿质氮含量、有效磷含量以及细菌、真菌和放线菌数
期刊
近年来,Mo-V-O复合金属氧化物作为催化剂,在醇类、烃类选择性氧化领域表现出广阔的发展前景。苯甲醛是一种简单的芳香醛,在香水、染料、制药和农业等领域中有着极为广泛的应用,为了满足苯甲醛在工业生产中的需求,选择苯甲醇氧化脱氢制苯甲醛是目前最为简单且绿色环保的可行方法。本文采用旋蒸法制备MoVOx复合金属氧化物催化剂,通过两种方式优化催化剂结构。一是Ce掺杂,通过调整Ce掺杂量与Ce掺杂方式;二是后
学位
近年来,随着科学技术的不断进步,工业生产的科技水平不断提高,越来越多的生产呈现智能化、数字化和网络化。因此,对于生产和产品本身的可靠性与安全性以及高质量、高性能的要求成为广泛关注与高度重视的研究课题。大型工业生产过程中,一旦发生严重故障,故障所带来的经济损失与环境污染是非常直观且恶劣的,因此工业过程中对于故障的及时检测、识别与处理至关重要。由于生产工艺结构复杂度越来越高,工业生产过程日渐繁琐,导致
学位
硅由于其超高的理论比容量(3579 mAhg-1,Li15Si4),适应的电压窗口(~0.4 V,vs.Li/Li+)以及丰富的储量,被认为是最具发展前景的锂离子电池(LIBs)负极材料。然而,Li-Si的合金化及去合金化过程中伴随着的巨大体积变化会造成电极的粉碎,电接触的消失以及固体电解质相间层(SEI)的反复破坏与形成等缺陷,使其在实际应用中受到了极大的限制。构建硅碳复合材料(Si/C、SiO
学位