论文部分内容阅读
聚合物材料的使用为社会发展带来了巨大变革。这些材料的性能与其结构密切相关,因此制备结构可控的聚合物材料一直是科学家们的研究重点。“活性”/可控聚合技术的出现和发展极大推动了具有可控结构聚合物的合成。另一方面,利用可见光作为外部刺激产生初级活性种引发聚合反应由于条件温和,可以在时间和空间两个维度实现对聚合过程的控制,在近年来受到了高度关注,已被广泛应用于多种“活性”/可控聚合技术中。乙烯基单体根据其双键所连基团不同可分为高活性单体与低活性单体,开发同时可调控高活性单体与低活性单体的聚合方法一直是研究难点。本论文基于可见光引发的可逆加成断裂链转移(RAFT)聚合技术,从拓展单体范围、提高聚合速率、简化聚合操作和聚合机理等方面开展研究。RAFT试剂通常是一些二硫代酯类化合物,本文通过对RAFT试剂中Z基团的设计,构建了温和高效、适用单体面广的可见光引发自由基聚合体系。同时,基于十羰基锰与卤代烃的卤素抽提反应,开发出一种对属于低活性单体的乙烯基醚类单体的新型可见光引发可控阳离子聚合方法。进一步将该方法与RAFT聚合技术结合,通过对RAFT试剂中R基团的转变,成功实现了自由基聚合与阳离子聚合的相互转变,为制备同时含有高活性单体与低活性单体的共聚物材料提供了新的策略。具体的研究内容如下:(1)设计合成了两种具有不同Z基团结构的黄原酸酯,并作为引发调控双功能试剂,实现了多种单体的光引发可控聚合,既适用于高活性单体如丙烯酸甲酯,丙烯酸正丁酯及N-异丙基丙烯酰胺,同时也适用于低活性单体如醋酸乙烯酯。聚合体系显示出典型的“活性”/可控聚合特征,即聚合动力学对单体呈现一级动力学关系,聚合物分子量随单体转化率的增加线性增长,所得聚合物分子量分布窄(D<1.30)。同时,考察了该聚合体系在不除氧条件下的聚合行为,结果显示RAFT试剂的光解可消耗体系中的少量溶解氧,随后聚合可正常进行。在进行丙烯酸酯类单体聚合时,仅需十分钟左右单体转化率可达95%以上,显示出超快的聚合速率。另外,通过黄原酸酯Z基团结构优化,实现了使用同一种RAFT试剂同时调控高活性单体与低活性单体的目的。利用该方法所制备聚丙烯酸甲酯为大分子调控试剂,成功实现了醋酸乙烯酯的可控聚合,得到了丙烯酸酯与醋酸乙烯酯嵌段共聚物。(2)利用三硫代酯作为引发调控双功能试剂开展了丙烯腈的可见光引发RAFT聚合研究。该聚合体系在室温蓝光的温和条件下进行,聚合组分简单,极大减少了传统热引发丙烯腈的RAFT聚合中不可逆转移和终止等副反应,制备得到了分子量分布窄的高分子量聚丙烯腈。光开关实验证明该体系是一个很好的光控制聚合反应。所得聚合物通过核磁,尺寸排阻色谱及大分子质谱进行了表征,结果显示该法所制备聚丙烯腈具有较高端基功能度,并进一步通过扩链实验证明了这一结果。最终在优化的条件下成功制备出分子量高达286300 g mol-1的聚丙烯腈。(3)结合电子自旋光谱方法及电子自旋捕捉技术开展了可见光引发的RAFT聚合机理研究。实验结果证明了 RAFT试剂的可见光裂解产生自由基的反应。电子自旋光谱中的超精细耦合信号显示成功捕捉到了硫中心自由基与碳中心自由基。通过醋酸乙烯酯的光聚合验证了光源波长对该聚合的影响。通过光引发RAFT聚合制备的聚丙烯酸正丁酯与聚醋酸乙烯酯的可见光裂解反应研究了RAFT试剂中R基团结构对光裂解反应的影响。定量实验显示在440 nm以上波长照射下的RAFT试剂中的黄原酸酯光解效率约为0.023%。(4)利用十羰基锰和卤代烃作为起始试剂,开展了乙烯基醚类单体的可见光引发可控阳离子聚合研究。十羰基锰与卤代烃通过卤素抽提反应,生成五羰基溴化锰,进而氧化体系中产生的乙烯基醚型碳自由基形成阳离子引发种,成功实现了乙烯基醚类单体的阳离子聚合。对聚合过程中的聚合行为及温度、单体与溶剂种类等因素对聚合的影响进行了研究。进一步利用原子转移自由基聚合所制备聚苯乙烯作为大分子卤代烃成功合成了聚苯乙烯与聚异丁基乙烯基醚嵌段共聚物。同时,利用带有羧基的RAFT试剂终止阳离子增长端基进行改性,并结合可见光引发RAFT聚合技术成功合成了聚异丁基乙烯基醚与聚甲基丙烯酸甲酯嵌段共聚物。(5)通过系统研究不同结构的RAFT试剂存在下的十羰基锰可见光引发阳离子聚合,构建了新型阳离子RAFT聚合方法。该方法通过可见光诱导十羰基锰与卤代烃的卤素抽提反应产生初级自由基与五羰基溴化锰,初级自由基引发乙烯基醚与RAFT试剂加成,原位产生阳离子RAFT试剂,五羰基溴化锰氧化自由基加成产物产生引发聚合的阳离子活性种,成功实现了乙烯基醚的可控阳离子聚合。其中以二硫代氨基甲酸酯制备出的聚异丁基乙烯基醚分子量分布窄(<1.20)。以该方法所合成的聚乙烯基醚为大分子RAFT试剂,结合RAFT自由基聚合,分别合成得到了异丁基乙烯基醚与醋酸乙烯酯和丙烯酸甲酯的嵌段共聚物。另外利用光引发RAFT聚合所制备聚丙烯酸正丁酯为大分子RAFT试剂成功合成其与乙烯基醚的嵌段共聚物,实现了阳离子聚合与自由基聚合的可逆转变,为制备高活性单体与低活性单体的嵌段共聚物提供了一种新的策略。进一步利用五羰基溴化锰为光热双响应催化剂开发了一种无需除氧及精制试剂的阳离子RAFT聚合体系,成功合成了端基功能度高的聚异丁基乙烯基醚。