晶粒组织对316型奥氏体不锈钢电化学腐蚀行为的影响研究

来源 :南昌航空大学 | 被引量 : 0次 | 上传用户:angelgsj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
晶粒组织的细化已被证明可以有效提升奥氏体不锈钢的综合力学性能。然而,晶粒细化对奥氏体不锈钢点蚀行为的影响规律及其作用机制目前还没有统一认识,尤其晶粒细化对不锈钢自腐蚀电位、自腐蚀电流密度和点蚀电位的影响规律存在许多相互矛盾的研究报道。这可能归结于不同研究中采用了不同的组织细化工艺,引入了除晶粒尺寸以外的其它影响因素。为此,现采用高能球磨+热等静压烧结制备出具有不同晶粒尺寸完全再结晶的不锈钢,以最大限度消除晶体缺陷、内应力和元素偏析等因素的干扰。同时,还通过冷轧退火制备出不同晶粒组织的不完全再结晶316系不锈钢,进一步对变形晶粒组织的影响进行研究。利用XRD、SEM和EBSD技术对不同状态的不锈钢的组织结构进行表征,利用电化学工作站研究了它们在典型的3.5 wt.%Na Cl溶液中的电化学腐蚀行为,并通过综合对比大量相关研究结果,对晶粒细化与不锈钢点蚀行为之间的关系进行了综合分析。主要获得的结论如下:高能球磨+热等静压烧结工艺可以通过控制球磨时间获得不同晶粒尺寸的完全再结晶组织,其晶界类型主要为大角度晶界。通过延长球磨时间,可以将晶粒尺寸由初始的10μm量级细化至亚微米量级;而多道次的冷轧可以获得超细的变形组织,其晶界类型主要为小角度晶界。后续通过控制退火温度和时间,可以使其组织结构由不完全再结晶组织过渡到完全再结晶组织。对于完全再结晶组织的316L不锈钢,晶粒尺寸的减小使其自腐蚀电位下降,自腐蚀电流密度上升,并且当细化至亚微米级后,表面钝化膜易受阴极极化的影响。晶粒尺寸的减小对其点蚀电位没有明显的影响,但可以促使形成更浅的蚀坑,增强蚀坑的再修复能力。因此,晶粒尺寸的减小仍然对不锈钢的抗点蚀性能有利。退火处理可以消除冷变形组织中的点蚀敏感位置,从而提升其抗点蚀性能。最优的对抗点蚀的组织状态是:绝大多数的细化变形组织能够得以保留,而那些由于微观应力和应变集中产生的点蚀敏感区域恰好被再结晶所消除,再结晶晶粒还未占据过多比例的状态。这可能就是本文中800 oC-150 s退火的不完全再结晶的316LN不锈钢具有最优异抗点蚀性能的由来。
其他文献
铁素体不锈钢因其线膨胀系数小、热导率高及耐腐蚀性优异等优势,广泛应用于汽车、海运集装箱、建筑及家电等领域。但是使用TIG焊对厚板铁素体不锈钢进行焊接时需要开坡口并多层多道焊,易因热输入积累过大而导致接头热影响区的铁素体晶粒过度长大,降低铁素体不锈钢接头的强度和韧性,因此极大的限制了厚板铁素体不锈钢的应用。采用A-TIG焊焊接厚板奥氏体不锈钢时能有效减少焊接次数和缩短高温停留时间,改善奥氏体不锈钢接
学位
Al-Cu系铝合金具有比强度高、质量轻等优点,被广泛应用于航空航天、国防工业和交通运输等领域。传统制造工艺制备复杂的铝合金零件,存在生产周期长、模具成本高等局限性。选区激光熔化(Selective Laser Melting,SLM)技术是一种适合成形复杂金属零件的增材制造技术,但由于Al-Cu系铝合金在激光成形过程中易氧化、对激光吸收率低、热裂倾向大等特性,导致其SLM成形困难。本文通过优化SL
学位
开孔泡沫铝是一种多孔轻质的功能材料,其性能由孔的结构性能和基体材料性能叠加构成,因其优异的性能广泛应用于各行各业。以聚氨酯泡沫为母体的石膏型精密铸造法是制备开孔泡沫铝主要方法之一,该方法制备的开孔泡沫铝孔隙率可达98%以上。泡沫铝孔支柱的力学性能是影响泡沫铝综合性能的主要因素,然而高孔隙率导致孔支柱通常较细小且端面多为三角形,这导致其力学性能差,极大地限制了其应用范围。为提高该类开孔泡沫铝的力学性
学位
由于广布疲劳损伤是导致航空事故的重要原因之一,其中多位置损伤(Multiple Site Damage)是广布疲劳损伤的主要形式,而多位置损伤MSD裂纹具有检测困难、存在时间长、扩展时间短的特点。在飞机的主导裂纹上,或主导裂纹的扩展方向上一旦出现较小的多位置损伤裂纹,则飞机结构件的剩余强度就会被大幅度降低,使之无法经受持续的循环载荷。因此,研究多位置损伤裂纹的萌生及其多裂纹扩展行为显得十分重要。本
学位
铍铜合金具有高强度、高硬度、高导电率等特点,是综合性能很好的铜合金。目前国内外科研人员关于铍铜合金的研究主要集中在高铍铜合金(1.6%~2.0%Be),但高铍带来优良的力学性能的同时,也给生产、加工带来诸多问题。因此,尽量降低Be含量是铍铜合金的发展趋向。但Be含量降低又会致使合金的力学性能显著降低,尤其对低铍铜而言强度和导电性这一对相互矛盾的性能更是很难两者同时兼顾。因此在尽可能满足低铍和不损失
学位
选区激光熔化(SLM)是以粉末材料为基础的一种增材制造技术。铺粉工艺是整个打印流程的第一步,也是后续激光扫描的基础。粉末性质很大程度上影响了粉末层质量,进而影响最终产品质量。因此,为了提高粉末层质量以及了解更多铺粉机理,本文采用离散元(DEM)与计算流体力学(CFD)研究了粉末层成形过程及其对熔道质量的影响。主要研究内容如下:(1)首先,以成形区粗糙表面作为新的铺粉基板,研究了铺粉过程中成形区的表
学位
增材制造被认为是新一轮工业革命的驱动力,受到了世界各国的广泛关注。传统选区激光熔化(Selective Laser Melting,SLM)只有一个激光,加工效率较低,成为限制其工业化应用的主要原因之一。选区多激光熔化可以显著增加制造零件效率,扩大其应用范围,对于推进SLM技术提高其效率和工业化应用具有重要的意义。但是对于多激光技术计算流体动力学(Computational Fluid Dynam
学位
Al-10Si合金由于其比强度高和良好耐磨损和耐腐蚀等性能,广泛用于汽车零件上,但随着科技的进步对材料性能的要求也越来越高,传统的Al-10Si合金性能难以满足生产需求。通过添加增强体可以强化材料的性能,石墨烯具有优异的力学和物理性能,作为金属基复合材料的增强体受到广泛关注。因此,制备石墨烯增强Al-10Si复合材料具有重要研究意义。本文采用超声分散和机械球磨法将石墨烯分散到铝粉中,再通过搅拌铸造
学位
铝锂合金具有密度低、比强度高、比模量大、焊接性能与耐蚀性能优良等突出特点,已成为制造航空航天产品的重要部件材料,如机身蒙皮和机翼面板。这些飞机部件在服役过程中会遭受沙尘、雨水、机械载荷和热冲击的耦合作用,使蒙皮抗疲劳与耐蚀性能迅速下降。激光冲击强化技术是一种新型有效的高能表面形变强化技术。该技术通过产生高能高压冲击波使得2060铝锂合金产生超高速率变形,可有效改善材料表面的微观组织、提高材料的力学
学位
以Nd、Pr等低丰度稀土制备的第三代稀土永磁材料因优异的磁性能,广泛应用于工业电机、电子设备、智能机器人和医疗器械等科技领域。Nd、Pr等稀土在稀土永磁中的消耗约占稀土总消耗量的40%,不利于稀土资源的综合使用,而高丰度稀土La和Ce仅作为副产品开发,处于供过于求的市场积压状态,如何提高La及Ce在稀土永磁中的利用率是学者们关注的焦点。本文从Ce价态调整、成分优化、微观结构调控等角度,研究制备了高
学位