异质半导体纳米材料的合成与其在人工氮循环的应用

来源 :天津大学 | 被引量 : 0次 | 上传用户:xtzzll
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
半导体纳米材料因其独特的电子结构而被广泛应用于催化能源转化和利用领域。与单组分半导体纳米材料相比,异质半导体纳米材料因异质材料的不同而在形貌、组分、结构等方面具有灵活的调控性。而且,构筑异质半导体纳米材料能有效调控其电子结构,进而提高其催化活性。设计和构筑异质半导体纳米材料,并研究异质结中电子结构的变化对其催化活性的影响规律,对于发展新的人工氮循环策略、开发新能源以及减少对化石能源的依赖具有重要意义。因此,本文以发展新的人工氮循环策略为导向,通过构筑异质半导体纳米材料,调控半导体的电子结构,来获得高
其他文献
先进的膜材料和膜结构是膜过程的核心,膜内通道的精密构筑与调控是优化膜结构、强化膜传质机制,进而实现高效分离过程的重要途径。本研究面向碳捕集这一能源环境领域重大需求,以通道精密构筑和CO2/CH4分离性能强化为目标,提出了以二维材料为膜通道构筑单元,纳米材料为插层剂,在亚纳米尺度实现了通道的精密构筑与调控,协同强化了多重传质机制(溶解机制、扩散机制和促进传递机制),揭示了通道结构与分离性能间的构效关
学位
以促进人的城镇化为核心、提高质量为导向的新型城镇化战略,是中国特色社会主义发展的重要实践,是建设现代化国家的关键举措。农村转移劳动力作为关涉新型城镇化建设与发展的核心主体,提升其素质,使其有能力在城镇稳定就业、融入发展,是促进以人的城镇化为核心的新型城镇化高质量发展的重要体现。职业教育、成人教育作为农村转移劳动力素质与能力提升的两种重要教育类型,在农村转移劳动力城镇化发展中协同共力,不仅迎合了新型
学位
金属配合物和超小尺寸金属颗粒催化剂因活性位点的充分暴露在反应中表现出超高的催化性能。然而,这些催化剂往往会因为分子间或颗粒间的相互作用而发生分解或者团聚,使其活性降低甚至失活。因此,如何构筑高效稳定的催化剂、防止分子间或颗粒间团聚是该研究领域关键科学问题。其中,实现催化活性位点的空间隔离是解决该难题的有效策略之一。有机氧化硅纳米管是一种新型的有机-无机复合介孔材料,其骨架和表面结构容易功能化,为均
学位
聚合物凝胶是一种由聚合物经交联形成的具有网络结构的凝胶材料,其在诸多生物医用领域有重要的应用。首先,本文设计了贻贝仿生金属交联水凝胶,并研究环境对该水凝胶粘合性能的影响及其作为组织粘合剂的潜力。结果显示,在适宜环境下(较低Fe~(3+)含量及生理p H)形成的金属交联水凝胶具有优异的粘合能力,可高效闭合皮肤伤口,拥有作为组织粘合剂的潜力。随后,在该研究基础上,本文通过仿贻贝粘合剂固化过程的方法,首
学位
钾具有储量丰富和氧化还原电位低等优点,为发展低成本和高比能钾离子电池提供了条件,且有望成为未来大规模储能设备,受到越来越多的关注。但由于钾离子半径较大,导致充放电时电极体积变化大、动力学性能差等问题。同时传统电极制备需要使用粘结剂、导电剂和集流体等非活性物质,为发展高性能钾离子电池带来极大挑战。针对这些问题,本论文设计制备系列基于碳纤维的自支撑电极材料,并系统研究了其储能性能和机理。主要研究结果包
学位
由于非共价键的动态性和可逆性,基于非共价键的高强韧超分子水凝胶具有可拉伸性、机械韧性和优异的自恢复性,是制备柔性传感器的理想材料。然而,超分子水凝胶通常由于功能性不足,导致其缺乏传感特性并限制了其应用范围。本论文基于疏水缔合、配位键及氢键等多重非共价键作用,设计并构建了一系列多功能高强韧超分子水凝胶,详尽地研究了其力学性能及相关分子机制,并对其形状记忆、热塑性、抗冻性及导电性等进行了评价,初步探究
学位
核酸类药物和化疗药物作为临床常用的抗肿瘤药物,有效地提高了肿瘤患者的存活时间,但是,由于这些药物自身结构和性质的局限性,如,基因药物的电负性、分子量大、不稳定性,以及化疗药物的毒副作用等,大大限制了它们的临床转化和应用。尽管人们相继开发了多种多样的纳米递送系统,并在肿瘤靶向药物递送上取得了很大的进展,但是仍需大幅度提高体内靶向和细胞水平上的递送效率。本文基于肿瘤的微酸环境,针对小干扰RNA(siR
学位
近年来,有机二维共轭聚合物(2DCPs)因其独特的物理化学性质及在光电子学、催化、储能等领域的应用,引起了人们的广泛关注。但是,目前制备二维共轭聚合物的方法均有各自的不足,阻碍了二维共轭聚合物的基础研究和相关应用。我们通过界面辅助,发展了多种具有普适性的界面合成方法,并探索了其在有机光电子学等领域的应用。本论文的主要内容可以分为以下三个部分:1.我们设计合成了刚性平面分子2-Br TTI,与另一前
学位
发展水相电化学还原反应实现水中氢到无机物和有机物的转移氢化对合成高附加值化学品具有重要意义。电化学二氧化碳还原反应因其既能缓解温室效应又能产生甲酸、烃类等高附加值化学品一直是研究的热点,但是研究人员往往重点关注如何提高其选择性,而对催化剂在还原条件下的活性物种探究较少。羰基化合物水相电还原偶联反应为频哪醇的合成提供了一条绿色、温和的途径,但目前的研究因催化体系选用不当常伴随析氢或生成一元醇的副反应
学位