基于混沌伪随机多层压缩感知隐私保护关键帧提取的视觉评价关联建模应用研究

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:tandge
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当今社会,随着人工智能等信息产业大规模地飞速发展,人们在生活中无时无刻不暴露在大数据之中。在当今人们对公共安全问题愈发重视的社会背景之下,长期以来所依赖的视频监控系统却造成了越来越频繁的隐私泄露问题,这不仅会对人们的生活产生了一定的困扰,还会给社会带来巨大的损失。另一方面,视频监控技术的迅速发展也会产生大量的视频图像数据,这些数据的存储以及处理将会带来巨大的资源消耗,在一定程度上也会影响社会的发展。因此在保证信息基本不丢失的情况下做到降低数据存储的成本是一个很有意义的研究方向。传统的视频隐私保护方法是在采样、压缩、传播等过程中实现对于隐私信息的保护,从而避免视频数据落入他人手上所带来的隐私泄露问题。但以上方法并未考虑到视频后续智能应用开展的必备条件,也未考虑到视频数据在经过这些方法处理之后,在后续处理阶段需要耗费更多的时间和计算量的问题。因此本文采用一种新的视频编码的技术,不需要像传统的方式一样进行加密、解密、重构等繁琐的方式,而是在对视频数据进行相关智能应用的过程中实现对于视觉层面的隐私保护问题。为解决视频监控数据中的隐私信息泄露问题,同时兼顾分布广泛的智能监控设备产生的海量视频数据所带来的高存储成本与检索过程中的高人力消耗,本文创新性研究部分主要有以下几方面:(1)利用压缩感知理论,对观测矩阵结合混沌伪随机技术,提出一种新的改进型观测矩阵。利用上述技术对视频进行多层视觉隐私保护编码处理,使其在视觉层面上做到隐私保护,同时尽可能地减少内部特征信息的丢失,为后续关键帧提取这一智能应用的工作正常开展做相应的保证。(2)为了客观有效地度量视频隐私保护质量,避免外界设备以及主观因素等不定因素对视频隐私保护质量度量工作的影响,本文通过提出一种基于图论的视觉显著性统一模式的LBP特征算子以及基于非对称改进型的a滤波器统计均值的对比度特征提取算子,设计一种改进型双特征融合的视频隐私保护质量评价算法,该算法的评价结果能更有效地描述视频隐私保护质量。(3)针对视频数据的存储以及过度隐私保护所造成的问题,本文提出基于一种亲和传播聚类和稀疏子空间聚类的双层无监督聚类关键帧提取算法,用以实现有效简洁地反映视频内容。与此同时,本文还提出了评价关键帧提取算法性能指标的CF值。在经过隐私保护编码处理后的视频与原始视频在信息表达层面有所缺失的情况下,过度的隐私保护处理可能会导致关键帧提取算法性能面临下降的风险,因此本文建立一个视频隐私保护质量分数与关键帧提取算法性能的关联模型,来平衡二者之间的关系。利用视频隐私保护分数对关键帧提取算法性能进行指导从而避免过度隐私保护问题的产生。
其他文献
行人重识别(Pedestrian re-identification)技术是指在若干不同摄像头拍摄的图像或视频序列中寻找出特定的行人,其应用场景主要是光照充足的日间场景。然而实际应用中,很多图像或视频是在夜间由红外相机拍摄的,传统的行人重识别无法解决此类问题,故行人重识别开始向跨模态行人重识别发展。红外图像和可见光图像的巨大差异使得跨模态行人重识别颇具挑战性。深度特征相比于传统特征具有很大优势,本
学位
当前市场竞争日益加剧,企业为了能够更好的实现发展,获得竞争优势,就一定要加强人力资本管理,培养高水平的人才。对竞争对手来说,企业人力资本的差异性、复杂性与创造性都是无法模仿的。因此,这也是企业实现自身竞争力增长的重点。增强人员培训管理,不断提升人员综合业务水平,是当前企业实现人力资本增值的主要基础,也能够促使企业业绩迅速增长。但是传统培训模式存在一定的局限性,其主要体现在教学方式单一,趣味性不足;
学位
侧信道攻击(Side Channel Attack,SCA)是一种强大的攻击方法,攻击目标主要是密码芯片和密码设备,利用数据加密时泄露的相关信息破解加密设备中所使用的加密密钥。SCA可以在数据加密的过程中不破坏密码设备和加密数据的情况下获得密钥信息,对密码设备的安全性产生了严重威胁。本文主要研究高级加密标准(Advanced Encryption Standard,AES)算法的侧信道攻击方法和实
学位
新闻报道中的图片可以抓人眼球,引起读者阅读新闻内容的兴趣,也可以直观地传递出新闻报道的内容。本文探究人工智能技术在图片新闻领域的应用,期望可以借助机器的力量,帮助新闻编辑者自动完成为新闻配图的工作。本文首先研究了新闻图片在报道中顺序插入的问题,提出了一种基于多模态循环神经网络的模型。该模型配有编码更新机制,可以将图片以一定顺序插入到新闻文本中的适当位置。对于每幅图片的插入位置,该模型的选择标准是候
学位
南京市作为经济实力、医疗水平稳居全国前列的省会城市之一,人口老龄化的速度与规模均远超全国同类地区,妥善解决老年人的养老问题至关重要。在积极应对老龄化的战略背景下,南京市逐渐建立起较为完善的居家养老服务体系,且在全国范围内一直处于引领的状态。即便如此,随着老年人的需求日益多元化,南京市已有的居家养老服务供给体系依然面临诸多挑战。基于这一现实背景,本研究以南京市居家养老服务供给现状的分析为基础,结合老
学位
云计算是能够根据用户需要提供互联网资源的商业计算模型。用户部署在云服务器上的应用系统能够根据需求量获得云上的资源,如计算能力和存储空间,这种需求量可以是无限的,只要求用户按量付费即可。随着云计算技术的不断发展,越来越多的数据所有者选择将其数据外包给云服务器。但是,外包的数据面临着被泄露的风险。为了保护外包数据的隐私,最常见也最直接的方法是在外包到云服务器之前对数据进行加密,再将加密后的数据外包给云
学位
净水厂是电能消耗大户,其中取水泵站和供水泵站的电能消耗占净水厂电能消耗的80%以上。现阶段清洁能源产生的电能十分有限,必须要使用传统燃料来稳定地生产电能,这已然导致了全球性的气候变化和能源危机。因此在满足城市供水需求和净水厂安全生产约束的同时,对取水泵站和供水泵站进行优化调度以实现电能节约和二氧化碳减排迫在眉睫。为此,本文提出了一种取水与供水泵站智能协同优化调度方法:首先,将长短期记忆网络(Lon
学位
移动边缘计算能够通过靠近用户提供计算服务以降低任务时延和提高服务质量,不同的卸载策略会影响卸载的效率,因此制定合适高效的卸载策略至关重要。深度强化学习通过训练智能体(Agent)在与环境交互的过程中学习能够实现长期效能的行为策略,能够有效解决移动边缘计算卸载问题。因此基于深度强化学习研究移动边缘计算卸载问题,主要工作如下:(1)针对多用户单服务器集中式卸载场景中,连续卸载策略容易收敛至局部最优解的
学位
随着信息技术和深度学习技术的快速发展,手写数学表达式的应用场景大量增加,需要快速、稳定和准确的手写数学表达式识别方法。但是因为表达式本身复杂的二维结构、手写字符的不规则和离线场景下笔画信息的缺失,手写数学表达式识别成为一项具有挑战性的工作。近年来,在手写数学表达式识别问题上出现了基于深度学习的全局识别方法,这其中以编码解码结构为代表,此类方法不需要进行单独的字符切割、识别和结构解析工作。然而目前该
学位
随着云计算、物联网、多媒体技术的飞速发展,人们在音频、视频等传统多媒体业务方面获得满足的同时,开始追求触觉感官体验。融合音频、视频和触觉信息的多模态业务已被广泛认为是超五代移动通信系统时代(B5G)的杀手级应用之一,为此,跨模态通信技术应运而生。但是,在跨模态通信过程中,会存在诸多难题。第一,多模态数据在通信及传输过程中,可能会遇到无线信道噪声污染、数据丢失等问题,从而严重影响跨模态通信质量;第二
学位