疏水颗粒与多相界面相互作用的动力学研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:zlw12345678901188
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
疏水颗粒与界面间的相互作用是一类具有动态润湿的流固耦合问题。这种现象不仅在自然界和日常生活中广泛存在,而且对工业生产起到极为重要的作用。由于这类流动问题不仅包含着移动接触线、界面毛细波和流固耦合等一系列非定常复杂流动现象,还涉及到浸润性、运动颗粒的直径和速度等多种影响因素,其中的流动机理尚未得到深刻认识。本文结合实验、数值模拟和理论分析的方法,聚焦颗粒的运动状态与流体界面间的相互作用,主要研究了三类典型的问题:超疏水小球撞击气-液界面后的自驱动浮选、小球撞击双层液池的沉浮特性以及气泡与颗粒间的相互作用。主要工作及研究成果如下:(1)实验研究了密度大于水的超疏水小球撞击液池后的自驱动浮选问题。揭示了在入水过程中,超疏水小球的直径、密度、撞击速度以及附着在球体上的气泡体积对其自身漂浮和沉没的影响机制。发现了一种新的小球重新浮出水面的流动现象,即在撞击诱导的空腔夹断封闭后,原本下沉的小球尾部可能会附着足量体积的气泡;这导致下沉的小球可以借助附着气泡的浮力上浮,并在气泡破裂后最终停留在水面上。分析了小球重新浮出水面的动力学过程,根据惯性主导下的空腔夹断和表面张力主导下毛细波传播两种流动机制,建立了小球运动模型,提出了小球能够重新浮出水面的临界条件。(2)通过实验和理论分析的方法研究了小球撞击双层液池的问题。发现当毫米尺度的超疏水-亲油小球撞击在铺设有500μm厚度的500cSt运动粘度油层的双层液池中,其发生沉没模态的临界速度获得显著地提高。实验上通过改变小球的直径和油层的粘度,定量揭示了油-水复合界面的毛细力和油层粘性的耗散作用。此外,本研究理论分析了小球在低粘性和高粘性油层中的减速运动模型,提出了小球沉浮模态转变的临界判据。最后,还对小球撞击双层液池的空腔、射流的动力学过程进行了实验探究,解释了“波纹状”空腔形态的形成原因。(3)数值模拟研究了附着气泡颗粒的动力学过程和浮沉机制。数值模拟结果显示,颗粒在气泡融合后可能存在两种流动模态:浮出水面和沉没。本研究分别从液体物理性质、界面几何构型和颗粒密度三个影响因素,分析了携带颗粒的气泡在自由液面融合后的动力学过程,讨论了毛细波传播对颗粒运动模态的影响,得到了颗粒运动模态与液相粘性的模态转变相图。基于理论分析,推导得到了在不同几何构型中,颗粒发生沉浮模态转变的标度律,且数值结果和理论预测符合良好。此外,还发现在气泡破裂后能够浮出液面的颗粒最大密度远小于轻轻放置在液面上漂浮的颗粒,且颗粒的存在可以显著抑制射流的形成。
其他文献
Piezo通道是在哺乳动物中发现的机械敏感离子通道,参与触觉形成、渗透压调节等多种重要生理过程,并与感觉异常、心血管疾病、肿瘤等疾病密切相关。Piezo将机械信号转化为电信号的机械激活过程可以由膜穹顶机制来描述解释,即Piezo通道与附近磷脂膜在不受力时呈现高度弯曲的穹顶状,而受力开放时变平,以获得在能量上更稳定的构象。这一过程可受Piezo蛋白本身性质、脂质、互作蛋白等多种因素调节,以适应Pie
期刊
进入21世纪以来,人们对于多媒体的需求日益增长:更高的视频分辨率,更小的视频压缩体积,更多样的浸入式视频格式如全景,点云等。这些需求随着编码技术的不断提升逐渐得到满足,但是另一方面,更复杂的编码结构,更多样的视频内容模式和视频格式支持,如屏幕内容编码(SCC)和全景视频编码,也意味着更高的编码复杂度和更多样的视频格式优化。因此对于现有编码器的复杂度加速优化和全景视频格式的优化都是十分值得研究的方向
学位
不锈钢暴露在较苛刻的大气环境下(含氯化物),大气腐蚀就会发生。常用金属材料在我国西部盐湖大气环境中的腐蚀研究调查表明,碳钢、耐候钢在盐湖大气环境中表现出较低的腐蚀速率,而具有良好耐蚀性的铝合金、不锈钢等钝化金属的腐蚀情况却异常严重,腐蚀速率甚至高于多数沿海地区及酸雨地区。目前关于不锈钢大气腐蚀的研究主要集中在海洋大气环境,前人针对温度、相对湿度、湿润时间和沉积盐等环境因素对不锈钢大气腐蚀的影响开展
学位
Al-Zn-Mg合金属于典型的可热处理强化型铝合金,由于其具有较高的比强度、优异的热挤压性能和良好的焊接性能等特点而被作为挤压型材应用于高速列车车体上。随着中国轨道交通行业的快速发展,Al-Zn-Mg合金的需求量在不断增加,同时,对材料自身的机械性能和抗应力腐蚀性能也提出了更加苛刻的要求。目前工业上常规的时效工艺很难使Al-Zn-Mg合金同时兼具高强度和优异的抗应力腐蚀性能,因此新型时效工艺的开发
学位
改革开放以来,中国的经济实现了高速增长,然而粗放型的生产模式使得经济发展始终伴随着严重的环境污染问题。尤其是我国的工业系统,在为国家生产总值做出巨大贡献的同时,也造成了严重水环境污染和大气污染。我国仍处于工业化进程中,工业发展存在高能耗、高污染、能源利用率低等现实问题,也使得环境治理和经济可持续发展迫在眉睫。为此,我国政府提出了绿色发展理念和碳达峰、碳中和的长期目标,污染防治的思路也从末端治理向全
学位
先天或后天损伤导致的组织缺损,是临床上常见问题。采用传统手段治疗存在效果不明显、需要二次手术等问题。近年来,随着生物学和材料学的发展,复合干细胞和生物材料的组织工程技术诱导组织再生为这类疾病提供了新的思路。水凝胶是一种高保水的高分子材料,其丰富的含水量与天然组织中细胞外基质类似,常作为组织工程支架。海藻酸盐是从海洋褐藻中提取的天然多糖类高分子,具有良好的生物相容性和生物安全性,在二价阳离子如Ca2
学位
针对重大疾病的成像、诊断、靶向及治疗,近年来在科学研究上已取得了不少进展,然而在临床应用上却不尽人意,主要因为缺乏高效安全的药物传输技术。因此,有必要开发一种多功能纳米材料,整合诊断、靶向和图像引导,提升治疗效果。本文通过静电雾化技术开发了具有“双核-单壳”结构的多功能微纳米微载体,可用于药物递送的各个层面,包括药物缓释、生物利用度增强、选择性药物释放、成像以及药物的可控递送。论文通过一系列的台式
学位
蒸汽发生器的传热管是压水堆核电站以及其他新型堆的重要结构部件之一。传热管长期服役过程中,腐蚀损伤的发生与发展通常起源于材料表面或近表面区域,且传热管在出厂、运输与安装的过程中通常会经历校平机械处理、表面划伤、高速喷丸等强烈塑性变形过程,所以材料表面状态严重影响其长期服役性能。因此,探究表面状态对传热管在服役环境下的长期腐蚀行为与短期电化学行为的影响具有重要意义,为关键部件的安全服役与未来构件设计与
学位
本文以第二代抗热腐蚀单晶高温合金/MCrAlY涂层体系为主要研究对象,采用了光学显微镜(OM)、背散射电子衍射技术(EBSD)、扫描电子显微镜(SEM)、透射电镜(TEM)、X射线衍射技术(XRD)等手段,开展了实验合金基体的长时服役损伤行为、喷涂MCrAlY涂层实验合金的界面组织演化特性以及持久性能研究,取得的主要研究结果如下:首先,开展了第二代抗热腐蚀镍基单晶合金在不同近服役温度条件下长时热暴
学位
NLRP3炎性体是一种在各种刺激下组装的细胞内多蛋白复合物,它控制caspase-1的激活,并调节IL-1β和IL-18的分泌。NLRP3炎性体的激活已被发现与很多慢性疾病息息相关,包括肺部纤维化、阿尔兹海默症、动脉粥样硬化、肥胖及癌症等。当前,多种纳米材料已被发现能够通过溶酶体破裂、活性氧物种产生、钾离子外流等途径激活NLRP3炎性体,引发纤维化疾病,这与其特有的理化性质密切相关。而环境和食品中
学位