【摘 要】
:
河床沉积物是地表水与地下水交互作用的关键地带和重要界面,由于河床冲淤作用所造成的河床沉积物组成、结构和厚度变化,河水入渗过程中水动力条件、酸碱条件及氧化还原条件发生强烈变化,导致河水-地下水水力联系转变及铁锰迁移转化过程较为复杂。目前对于河床冲淤影响下河水入渗水动力-铁锰迁移转化过程耦合机制尚不完全清楚。基于此,论文以沈阳黄家傍河水源地为研究区,应用水上钻探、动态观测、室内模拟及数值模拟等技术,在
论文部分内容阅读
河床沉积物是地表水与地下水交互作用的关键地带和重要界面,由于河床冲淤作用所造成的河床沉积物组成、结构和厚度变化,河水入渗过程中水动力条件、酸碱条件及氧化还原条件发生强烈变化,导致河水-地下水水力联系转变及铁锰迁移转化过程较为复杂。目前对于河床冲淤影响下河水入渗水动力-铁锰迁移转化过程耦合机制尚不完全清楚。基于此,论文以沈阳黄家傍河水源地为研究区,应用水上钻探、动态观测、室内模拟及数值模拟等技术,在识别辽河河床沉积物岩性组成和厚度变化的基础上,查明河水入渗过程中铁锰时空分布、氧化还原分带变化规律及微生物响应特征,探究河床沉积物厚度影响下铁锰迁移转化过程,进一步揭示河床冲淤影响下河水入渗带内水动力-铁锰迁移转化耦合机制。该研究可为丰富地表水-地下水交互作用带研究内容、深化认识河床冲淤条件下河床沉积物中生物地球化学循环机制,保障水质和生态安全提供科学依据。通过本论文研究,主要获得以下结论和认识:(1)调查期间(2020年9月-2020年11月)河段内低水位期河床沉积物总体表现为冲刷状态,冲刷深度为4~9 cm。受河床冲刷作用影响,河床沉积物渗透系数具有明显的时空变异性,弱冲刷区低于中、强冲刷区,且低水位期高于高水位期。(2)受河床冲刷作用影响,河床沉积物岩性颗粒变粗,河水入渗速率增大,且营养物质通量升高,河床沉积物内铁锰潜在地球化学活性及有机碳活性总体逐渐增强,沉积有机碳与铁锰形态之间的相关性更强。(3)河床冲淤作用显著影响了河水入渗过程中氧化还原分带规律。相比于高水位期,低水位期近岸带氧化还原分带上移了5.5~23 cm,中间过渡带和河床中心带氧化还原分带下移距离为0.1~10 cm。河床沉积物中优势菌的空间分布与氧化还原分带呈现协同演化特征。(4)铁锰氧化物还原性溶解作用和有机质结合态铁锰氧化作用是控制河水入渗过程中铁锰迁移转化的主要生物地球化学反应;在由于河床淤积引起河水-地下水由饱和连接逐渐过渡至完全脱节的过程中,河水入渗环境由缺氧环境演变为相对富氧环境,氧化还原分带范围变窄,铁锰氧化物还原作用减弱。(5)河水入渗带水动力-铁锰迁移转化耦合模拟结果表明,在河床淤积和地下水开采驱动下,河水-地下水从饱和连接至完全脱节的过程中,铁锰迁移转化过程具有明显不同的特点。在河水-地下水饱和连接阶段,缺氧条件驱动了铁锰氧化物的还原作用;过渡脱节阶段DO的侵入主导了Mn2+和Fe2+氧化过程;完全脱节后,含水层中的DO被消耗殆尽后,铁锰成为微生物利用的电子受体,铁锰氧化物的还原作用逐渐占据主导地位。
其他文献
随着经济水平不断提高,我国汽车保有量快速增长,消费者对汽车的安全性和舒适性也提出了更高的要求。汽车在开窗工况行驶时会产生低频高强度的风振噪声,极易导致驾驶疲劳。虽然各大车企每年在风振噪声控制研究方面花费巨资,但已有控制方案仍存在效果欠佳、对造型影响大等诸多不足之处。近年来,介质阻挡放电等离子体激励器(DBD-PA)因具有结构简单、响应迅速、对造型影响小等优点,已经成为流动控制领域的研究热点,并展现
自从石墨烯在2004年首次通过机械剥离法成功制备以来,具有类似石墨烯六角结构的二维(2D)材料的性质及其应用就得到了广泛的研究及关注。在此基础上,随着多种新型类石墨烯二维材料的发现及成功制备,类石墨烯二维材料异质结构的出现为材料的发展提供了新的方向。相比于纯二维材料,由两种不同材料形成的二维材料异质结可能展现出其组分材料性质的综合性能,甚至能够展现出其他的新特性,这使得其在电子学、光学、自旋电子学
随着国家与社会对于人口老龄化和劳动密集型产业转型等问题的关注度与日俱增,各类助老助残和人体增强下肢外骨骼已经在医疗康复、工业生产和军事领域等各个方面体现出了深远的应用前景与研究价值。而对于下肢外骨骼的设计与研究来说,仍需要解决模型准确度不高、控制性能较差、人机耦合不协调、意图识别不准确、控制策略不智能等问题。因此,本文以下肢外骨骼的人机耦合控制性能为目标,从人机耦合控制的准确化、安全化和智能化为出
如今通信行业发展迅速,与其相关的高清直播、智能家居、工业自动化、导航定位、无人机等技术为人们带来极大便利。与此同时,通信技术对传输速度和容量的要求越来越高,频谱竞争也愈发激烈,可利用的频谱资源所剩无几。于是人们开始重视能够应用在近程无线通信系统中的超宽带技术。超宽带是由美国联邦通信委员会(Federal Communications Commission,FCC)定义的一种短程高吞吐量的无线通信技
实验背景:同种异体肾移植术是目前治疗终末期肾病的首选治疗方案,为广大终末期肾病患者带来了希望。肾移植术后抗体介导的排斥反应(Antibody-Mediated rejection,ABMR)是影响移植肾功能并最终导致移植肾失功的主要原因。随着临床检验技术的发展,术前人类白细胞抗原(Human leukocyte antigen,HLA)配型减少了HLA介导的细胞性排斥反应及HLA抗体介导的体液性排
猪血凝性脑脊髓炎病毒(Porcine hemagglutinating encephalomyelitis virus,PHEV)是一种嗜神经性β冠状病毒,主要感染哺乳期仔猪,诱发脑脊髓炎和/或呕吐消耗性疾病,致死率高达20%~100%。研究发现,PHEV经呼吸道感染宿主后,由嗅神经或三叉神经传播至中枢神经系统,神经细胞是其复制增殖的主要场所,但PHEV感染神经细胞的机制还有待于深入阐明。冠状病毒
研究背景肝脏是人体重要的组织器官,在机体的物质代谢和能量转换中占有极其重要的地位。部分肝切除术是现阶段临床上治疗各种先天性肝脏疾病、肿瘤性肝脏疾病、创伤性肝脏疾病、感染性肝脏疾病最主要的手段。如何快速有效地促进术后残余肝脏组织再生和修复以代偿受损肝功能是肝脏外科急需解决的问题。间充质干细胞(Mesenchymal stem cells,MSCs),由于其低免疫原性、多能分化性及旁分泌特性,已被广泛
互补源辐射作为一类整合了电流辐射源和等效磁流辐射源的特殊辐射源类型,具备在紧凑空间内构造天线辐射特性的潜力。传统的互补源天线具有宽带,增益稳定等优点,但结构均较为复杂,且形式也相对固化。本文以传输线单模和多模设计的角度作为切入点,改造传输线实现互补源辐射。以微带传输线为开放型传输线的代表,分析了如何改造开放型传输线实现互补源辐射,并基于该理论实现了多款具有180?的半功率波瓣宽度的宽波瓣天线。同时
中子散射新样品环境开启了新学科研究领域和交叉前沿,且样品参数向着极端化、多条件、多场耦合发展。中子散射超导磁体就是符合这些条件的一种非常重要的实验仪器,但是,该仪器的研制被国外少数公司(OxfordInstruments)垄断。在国家重点研发计划“中子散射样品环境及相关实验技术”项目支持下;中国科学院强磁场科学中心承担了该项目的关键子课题“中子散射超导磁体系统”。一方面,研制拥有自主知识产权的原位
免疫检查点作为免疫细胞对靶细胞清除过程中的抑制性节点,在调节免疫反应的强度和持续性上具有重要作用。肿瘤细胞通过劫持这种抑制途径获得了免疫抵抗,实现了肿瘤免疫逃逸。免疫检查点抑制剂通过阻断免疫检查点与肿瘤细胞上配体的相互作用来恢复免疫细胞对肿瘤的攻击性。获得性免疫检查点抑制剂作为恶性肿瘤免疫治疗的重要手段,其在非小细胞肺癌治疗上显示的生存优势推动了科研工作者对多种免疫检查点抑制剂的探索。CD47作为