溶剂和添加剂对氟啶虫酰胺晶体形貌的调控研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:frankcomet
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在结晶过程中,使用有效的方法调控晶体的形貌对工业生产有着十分重要的意义。本文基于溶液结晶过程,以氟啶虫酰胺为模型物质,采用实验和模拟相结合的方法,主要研究了溶剂和添加剂对氟啶虫酰胺晶体形貌的调控作用。为了系统地研究氟啶虫酰胺的结晶过程,本文首先研究了氟啶虫酰胺在不同溶剂中溶解过程的热力学性质,对结晶溶剂进行了初步筛选。采用重量法测定了氟啶虫酰胺在12种纯溶剂(甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、乙酸乙酯、乙酸丁酯、丙酮、乙腈、四氢呋喃、二氧六环)以及混合溶剂(乙醇+乙酸乙酯)中的溶解相平衡数据,结果表明实验温度和溶剂组成是影响溶解度的重要因素,重点研究了溶剂对溶解度的影响,采用密度泛函理论计算了溶质与溶剂之间的结合能,得出结论:溶质与溶剂之间的结合能越强,溶质在该种溶剂中的溶解度越大。此外采用Apelblat、van’t Hoff、λh、NRTL、Wilson、CNIBS/R-K、Jouyban-Acree模型分别对单溶剂体系与二元溶剂体系溶解度数据进行了拟合,并且基于van’t Hoff方程计算了溶解过程的热力学性质,结果表明氟啶虫酰胺在各溶剂体系中的溶解过程均为吸热、非自发、熵增、焓驱动过程。同时基于溶剂挥发结晶实验初步研究了不同溶剂体系的结晶特性。其次,采用快速降温结晶方法研究了溶剂和添加剂对氟啶虫酰胺晶体形貌的影响,首次解析了氟啶虫酰胺的晶体结构。通过溶剂筛选实验发现,氟啶虫酰胺在乙醇溶剂中结晶得到片状形貌,而在乙酸乙酯溶剂中结晶得到针状形貌。在考虑溶剂对晶体形貌的影响后,对附着能模型进行了修正,对模拟盒子进行了尺寸优化,从而较准确的预测出了氟啶虫酰胺的晶习特征。此外,研究发现乙醇中加入离子液体对晶体粒度有明显的调控作用。以1-丁基-3-甲基咪唑四氟硼酸盐和1-丁基-3-甲基咪唑醋酸盐为例研究了不同浓度的离子液体添加剂对氟啶虫酰胺溶解度和晶体形貌的影响,采用分子动力学模拟计算了添加剂和各晶面的相互作用能,揭示了离子液体添加剂对氟啶虫酰胺晶体形貌的影响机制。
其他文献
本文基于富含酪氨酸的多肽YYHYY,分别通过共价共组装及诱导共组装的方法构建了两类模拟酶催化剂。借助多种表征分析手段对两种模拟酶形貌、结构、催化性能等进行研究,并最终应用于比色和拉曼检测中。主要研究内容如下:(1)通过共价共组装策略制备了一种稳定的肽组装过氧化物酶模拟酶(CCA-YH)。在酪氨酸多肽YYHYY与血红素共组装(CA-YH)的基础上,通过钌介导酪氨酸侧链发生光交联生成联二酪氨酸共价键,
学位
聚氨酯热熔胶是目前应用最广泛的胶粘剂之一,市售热熔胶大多数是固体的,普遍存在软化点高、熔融黏度大和施工工艺繁琐等缺点。水性聚氨酯(WPU)热熔胶可以在常温下实现涂布过程,所需设备简单方便,因此日益受到重视。本文采用自乳化法制备了一系列WPU型热熔胶,并对其配方和工艺参数进行了优化。首先以2,2-二羟甲基丙酸(DMPA)作为亲水扩链剂,1,4-丁二醇(BDO)为小分子扩链剂,分别以聚四氢呋喃醚二醇(
学位
超级电容器是一种新型的储能和能量转换装置,具有功率密度高、循环寿命长、环境友好等特点。它是解决能源问题的重要手段之一。双金属氧化物有非常高的理论比容量,作为电极材料时可以弥补超级电容器能量密度低的缺点。然而双金属氧化物的实际比容量远低于理论值,限制了其实际应用。氧空位作为缺陷工程的一种,可以增加双金属氧化物中载流子的浓度,提高双金属氧化物的导电性,从而提升其实际比容量。本文以钴酸镁作为研究对象,通
学位
表面活性剂和水溶性聚合物体系在日用化工、制药、油漆、油田开发和矿产加工等领域有着广泛的应用,其相行为以及不同相态所对应的流变学性质一直是各界学者研究的热点话题。工业生产中,往往需要控制混合体系中每种物质特定的浓度范围区间,以使其达到一定的应用标准,并在此基础上同时考虑不同添加剂作用于混合体系的情况,使研究更具有理论与实际指导价值。本文针对不同浓度聚乙烯醇(PVA)/脂肪醇聚氧乙烯醚硫酸钠(AES)
学位
共价有机框架材料(COFs)具有多孔的结构,规整有序的孔道以及优越的物理化学稳定性,因此非常适合用于制备高通量的分离膜。界面聚合法可以用于在室温下、短时间内制备大面积COFs分离膜,具有重要的应用价值。由于界面聚合本身条件的限制,这种方法制备的COFs膜存在结晶度低、缺陷难以控制的问题,导致其通量高但截留率低。对此,本文利用基于界面聚合法制备一系列COFs复合膜,通过调控COFs孔道结构获得兼具高
学位
空气污染和水污染问题一直困扰着人类社会的发展。一方面,工业活动产生的大量温室气体二氧化碳(CO2)导致全球变暖,给环境带来了诸多挑战;另一方面,地下水和地表水中累积的硝酸盐(NO3-)污染物构成了人类健康的潜在威胁。因此,同时将CO2和NO3-转化为具有碳氮键(C-N)的高附加值化学品,是一种“变废为宝”的有效策略。尿素作为其中最理想的产品之一,被广泛应用于医学、农业、化妆品、工业等领域,更是目前
学位
不饱和醛选择加氢是合成不饱和醇、饱和醛和醇的重要方法。本文以2-乙基-2-己烯醛(异辛烯醛)选择加氢合成2-乙基己醛(异辛醛)为模型反应,基于钯碳催化剂载体表面氧化处理和原位氮掺杂改性进行高性能催化剂的制备,并研究催化剂在不饱和醛选择加氢反应中的构效关系。首先采用硝酸对活性炭载体表面进行氧化改性处理,然后负载钯制备得到Pd基催化剂并用于异辛烯醛碳碳双键选择加氢。研究发现,载体经过氧化改性处理后,催
学位
纳滤膜在实际应用过程中存在渗透选择性能不理想,膜面易被有机物和细菌、真菌等微生物污染的问题。通过界面聚合法,将亲水且具有抗菌性能的新单体引入膜中,有望从根本上优化膜结构,同时提升所制膜渗透选择性、抗污染和抗菌性能。此方法不增加额外改性步骤,所用单体价格低廉且来源广泛,因此具有大规模放大和实际应用的潜力。本文围绕上述思路开展了以下研究工作。选择哌嗪(PIP)和新霉素(NEO)为水相单体,均苯三甲酰氯
学位
有机废水如染料废水、抗生素废水等是环境污染的一个主要来源,关于有机污染物降解的研究受到诸多关注。水力空化反应器具有结构简单,易于操作,维护成本较低等优点。通过调控反应器几何参数和操作条件得到理想的空化强度。水力空化降解有机污染物成为一种非常具有发展潜力的研究方向。通过将水力空化技术与其他高级氧化过程(AOPs)结合的方式,可以极大地提高有机物的降解率及能量效率、减少化学品的使用从而降低有机污水的处
学位
液固两相流化床凭借其接触高效、传质传热性能优良、颗粒分布均匀等优点被广泛的应用在化工、能源、冶金、材料和医药等领域。然而,流化床中复杂的流动传质耦合行为及其伴随的湍流特性十分复杂,仅依靠实验和纯理论分析难以揭示其相互作用规律,无法获得准确的速度场和浓度场分布情况,制约了液固两相流化床技术的进一步发展和工业应用。目前,将计算流体力学(CFD)与传质过程理论相结合并与计算机相关学科交叉而发展出的计算传
学位