石墨层间化合物剥离制备石墨烯及其性能研究

来源 :北京化工大学 | 被引量 : 3次 | 上传用户:mmmmmmmmmmmmmmmmmmmm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
石墨烯(graphene)是研究人员发现的第一种二维原子晶体,这种单原子厚度的碳元素结构,将极强的机械性能、异常高的电导率与热导率以及其它优异的特性结合在了一起,这使得石墨烯在诸多应用领域都引起了研究者的高度重视。近十年来,石墨烯制备方面的研究工作已进有了很大突破,但是大规模、工业化制备石墨烯仍然存在诸多问题。氧化还原法可以制得公斤级的石墨烯,但是氧化还原过程会在片层中引入含氧基团以及缺陷,造成石墨烯导电与导热性能的降低。本论文中,我们介绍了一种新的制备石墨烯的方法,以石墨层间化合物(Graphite intercalation compounds, GICs)为前驱体,通过高温热膨胀制备石墨烯薄片。我们使用氯化铝与氯化铁作为共插层剂,以天然石墨为原料制备GICs,氯化铝在较低温度下即可气化,氯化铁可以为插层反应提供氯气来源,使用二者作为共插层剂能够在较为温和的条件下制得GICs。研究发现:氯化铝无法单独作为插层剂插入石墨的片层间;同时使用氯化铝与氯化铁,插层温度180 ℃以上即可成功制得GICs,并且随着温度的升高,得到GICs产物的结构有所差别;200℃左右,插入石墨层间的主要是氯化铝,并且在清洗过程中,氯化铝与水的剧烈反应会破坏石墨片层的规整结构;250℃以上制得的GICs,插层剂主要是氯化铁,可以形成规整的一阶插层结构。之后,我们以200 ℃制得的GICs为原料,使用马弗炉高温热膨胀制备石墨烯。研究发现,热处理温度为500℃,产物只会发生插层剂的气化脱除;当热处理温度超过800℃C时,插层剂短时间迅速气化脱除,蒸汽压超过了片层间的作用力,产物会发生明显的体积膨胀,片层间距明显增大,形成类似于蠕虫状的结构,经过短时间、低功率的超声清洗处理,即可得到片层尺寸10μm以上、片层厚度2-8nm的石墨烯纳米薄片。随着热膨胀温度的升高,制得产物的片层厚度由集中于5 nm以上逐渐降低为2-4 nm。该方法制得的石墨烯薄片,片层间仍然残留有一定量的过渡金属化合物,会对石墨烯的性能产生影响。本课题的创新点是发现了一条新的制备石墨烯的路径,该路径不需要使用强氧化剂对石墨进行处理,天然石墨经过插层、热膨胀以及简单的超声处理即可制得片层尺寸较大的石墨烯纳米薄片,并且制得的石墨烯的片层尺寸可以达到几十微米。
其他文献
图书馆信息化建设不能仅仅着眼于信息技术本身,应该面向图书馆业务流程重组,图书馆业务流程重组和新信息技术应用二者相互依存、相互促进,图书馆要在信息技术的基础上重新科
控制测量平差是测量工作内业处理中相当重要的一环。使用计算机进行平差既节省时间 ,又能提高计算结果的准确性 ;而我院现有的用 PC— 15 0 0机进行测量平差已无法满足现实要求。另外 ,随着信息技术的快速发展 ,测绘行业的许多操作已经实现自动化或半自动化 ,测量平差与计算机的联系已成为必然。目前 ,市场上推出的测量平差软件或平差大全 ,大都是在原有的 PC— 15 0 0平差程序基础上经过处理而来
期刊
碳纳米管(CNTs)是由单层或多层碳石墨片层卷曲而成的无缝中空管,具有丰富的一维纳米级孔隙结构。并且CNTs因径向尺度很小,而具有较大的比表面积。对CNTs特殊的微观结构加以利用,将其与金属或金属氧化物复合,利用其各自的物化性质,提高储氢性能,是开发高性能储氢材料的重要课题。本论文通过沉积-沉淀法制备催化剂,采用化学气相沉积法在Ti粉基体上合成了CNTs/Ti复合粉末,研究了催化剂种类、催化剂Ni
尼龙作为通用热塑性工程塑料,因其优良的电绝缘性、力学性能、耐溶剂性和良好的加工特性,在很多领域得到广泛的应用。然而,尼龙在低温下韧性低和抗静电性差,需要添加弹性体进行增
目前大部分合成高分子材料采用属不可再生资源的石油为原料,除了在生产过程中产生环境污染外,其废弃物难以生物降解,给环境带来严重的问题,如何减少对石油资源的依赖,更多地利用可
通信是社会生产生活的重要依托,通信行业的发展水平决定了社会生产中各个行业之间的沟通与联络的程度。随着通信行业的快速发展,多媒体通信技术占据了通信领域的空间。多媒体
第VB族金属铌(Nb)具有低成本、氢扩散速率高等优点,其氢渗透研究备受关注,然而严重的氢脆问题限制了其实际应用。研究证实,掺杂是改善Nb金属抗氢脆性差的有效方法之一。基于此,本研
材料晶粒尺度在纳米级别时会显示出各种优越的性能,如电学、光学和催化等性能,但要保持这些性能必须在保持晶粒尺寸的同时保证相的稳定性。在加热或降温的过程中往往会发生相
纳米材料是一种新型材料,近年来,它所具有的不同于传统材料的新特性引起了人们极大的兴趣。磁性纳米材料作为一种新兴的功能材料,越来越引起人们的注意。其中磁性Fe3O4纳米材料
镁合金与铝合金因其密度小、比强度和比刚度高、良好的机械加工性能和尺寸稳定性、抗冲击性能好等,现已经被广泛应用于航空航天、电子通讯、轨道交通、汽车制造等领域。实现