【摘 要】
:
随着现代社会的发展,汽车保有量持续增加,汽车噪声对人们的生活及环境产生了极大的干扰,且汽车车内噪声对驾乘人员的舒适性存在很大的影响。聚氨酯多孔材料作为汽车降噪材料之一,可用于降低车内噪声,提高车内环境质量。石油资源的枯竭以及环保意识的加强,使寻找聚氨酯主要原料之一-石油多元醇的替代品具有重大意义。另外,生物基聚氨酯多孔材料声学性能与传统石油基聚氨酯相比,并没有太大的优势。因此通过改变聚氨酯外观结构
论文部分内容阅读
随着现代社会的发展,汽车保有量持续增加,汽车噪声对人们的生活及环境产生了极大的干扰,且汽车车内噪声对驾乘人员的舒适性存在很大的影响。聚氨酯多孔材料作为汽车降噪材料之一,可用于降低车内噪声,提高车内环境质量。石油资源的枯竭以及环保意识的加强,使寻找聚氨酯主要原料之一-石油多元醇的替代品具有重大意义。另外,生物基聚氨酯多孔材料声学性能与传统石油基聚氨酯相比,并没有太大的优势。因此通过改变聚氨酯外观结构提高其声学性能,使生物基聚氨酯有更好的应用效果,这具有重要意义及工程实用性。本文响应国家绿色环保主题,采用菜籽油多元醇和椰子油多元醇作为石油多元醇的替代品,制备菜籽油和椰子油基聚氨酯多孔材料,并分析椰子油多元醇和菜籽油多元醇的含量对聚氨酯声学性能、力学性能、微观结构、老化性能的影响。研究表明菜籽油多元醇增强聚氨酯的声学性能,削弱其力学性能。本文进一步分析了聚氨酯各原料对聚氨酯声学性能和力学性能的影响,并以菜籽油多元醇、二苯基甲烷二异氰酸酯(MDI)、去离子水的含量为设计变量,平均吸声系数、杨氏模量为优化目标,采用响应面Box-Behnken设计方法设计试验。根据试验结果,建立了设计变量与优化目标之间的数学模型,最终确定了菜籽油和椰子油基聚氨酯的最佳配方,制备出综合性能(声学性能和力学性能)良好的聚氨酯多孔材料,并进行试验验证。并对比分析优化样品与优化前样品以及石油基聚氨酯的泡孔结构、声学性能以及力学性能。将声学黑洞引入聚氨酯多孔材料,分析声学黑洞结构对其声学性能的影响。通过改变一维和二维声学黑洞的函数系数和截断厚度,分析聚氨酯多孔材料的吸声曲线变化。研究表明,一维声学黑洞结构降低多孔材料的中低频声学性能,提高了多孔材料的高频声学性能;二维声学黑洞结构应用于多孔材料时,其高频声学系数显著提高,低频吸声系数略降低。其中,在一维声学黑洞结构中,函数系数和截断厚度对材料的全频段吸声性能有着较大的影响;在二维声学黑洞结构中,函数系数和截断厚度只影响了材料的中低频吸声性能。依据房间和汽车实际结构尺寸,构建房间和汽车简易模型,将一维和二维声学黑洞聚氨酯多孔材料应用于房间天花板和汽车顶棚,并对比石油基聚氨酯、菜籽油和椰子油基聚氨酯以及声学黑洞聚氨酯多孔材料时声压级的变化。结果表明,菜籽油和椰子油基聚氨酯与石油基聚氨酯对房间和汽车内部的噪声效果相差无几,声学黑洞多孔材料有效地改善了房间内部噪声和车内噪声。
其他文献
随着我国汽车行业的发展和人民生活水平的提高,消费者的购车理念日益成熟,人们日益关注汽车的乘坐舒适性,车内噪声的大小是评价乘坐舒适性的一个重要指标。在汽车行驶过程中由于换气、除雾等需要,打开车窗时会产生低频率高强度的风振噪声,风振噪声极易使驾乘人员产生不适感,严重影响乘坐舒适性及行车安全性,因此研究风振噪声的生成机理、探究风振噪声的影响因素以及对汽车风振噪声进行控制具有非常重要的意义。本文从一般性模
轮胎由多种胶料与复合材料组成,在高速滚动时,由于橡胶材料具有粘弹性,而且轮胎与路面之间会相互摩擦,所以势必会造成轮胎各部分产生大量的热。累计在轮胎上的部分热量,不能够及时的消散,会导致轮胎温度的升高。轮胎温度的升高会造成各部分胶料的抗拉强度、疲劳强度和剪切强度等物理力学性能变差,这是导致轮胎疲劳损坏与耐久性降低的重要原因,所以建立能够表示轮胎温度的热模型有十分重要的意义。国内外关于轮胎热模型的建立
目的:观察宣通汤联合阿昔洛韦治疗面神经炎的临床效果。方法:选取2020年1月—2021年4月我院收治的40例面神经炎患者作为研究对象,采用随机数表法分为参照组和宣通汤组,每组20例。参照组采用阿昔洛韦治疗,宣通汤组则采用宣通汤联合阿昔洛韦,观察对比两组的临床治疗效果。结果:宣通汤组的总有效率(95.00%,19/20)高于参照组(70.00%,14/20),差异具有统计学意义(P<0.05)。结论
智能汽车行人避撞系统是一种基于智能传感信息的旨在避免或减轻车辆对于行人伤害的高级驾驶辅助系统(Advanced Driving Assistance System,ADAS)。传统道路测试对于复杂工况难以复现,相机在环测试可以通过嵌入真实的相机硬件和构建虚拟场景弥补这种不足。因此搭建相机在环测试平台对相机成像影响因素进行深入研究,并以此为基础构建虚拟测试场景,探寻加速测试方法,对基于视觉信息的智能
玄武岩纤维增强复合材料是一种很有前途的新型复合材料,具有高强度、高模量、断裂韧性高、耐腐蚀性和阻燃性等特点,在航空航天和汽车应用中具有很大的潜力。编织纤维结构可以改善纤维复合材料层间和层内强度,提高纤维复合材料的抗分层能力。纤维复合材料在受到动态载荷时,会存在明显的应变率效应。由于复合材料之间性能存在差异,因此其对应变率敏感程度也各不相同。针对复合材料的低速冲击仿真,使用的参数大多是材料的准静态性
随着科技的进步,汽车行业提出了电动汽车、轻型汽车、智能网联汽车的发展趋势,而汽车车身上传统的电磁执行器质量大、体积大、噪声大等缺点日益凸显,与新时代汽车的发展理念相悖。形状记忆合金是一种新型材料,而以形状记忆合金材料作为执行元件的执行器具备结构小巧、无冲击噪声、无电磁干扰等优点,可以用来替代汽车上的传统电磁执行器从而改善上述缺点,具备着着良好的发展前景。形状记忆合金由于独特的材料成分,使其相比于普
二十一世纪的今天,汽车已经融入到了人们的日常生活中,成了不可或缺的交通工具。作为车辆和行驶路面接触的唯一部件,轮胎的性能决定着整车的性能表现,当轮胎充气压力不足时,会导致车辆行驶阻力增大,油耗升高,甚至导致爆胎,对驾乘人员的人身安全产生极大威胁。因此,实时监测轮胎压力状态,在胎压状态发生异常时警示驾驶员,对提高驾乘安全性和行驶经济性有重要意义。胎压监测系统(TPMS)正是为了解决上述问题而生的,它
燃料电池汽车相比于传统燃油汽车、纯电动汽车,具有无污染、零排放、燃料加注时间短、续驶里程长等优势,具有良好的应用前景。当前燃料电池系统的动态响应较慢,启动时间较长,在汽车起步、急加速、高速、爬坡等工况下对整车的性能有较大影响,从而影响驾驶员的驾驶感受,即影响驾驶性。因此研究驾驶性建模与仿真方法是燃料电池汽车集成匹配方法研究的重要内容。经调研,对燃料电池汽车整车性能的研究大多集中在动力性、经济性的建
随着智能交通体系的不断发展,现代社会对交通的功能和效率提出了越来越高的要求。然而,由于交通环境的复杂多变性,参与者的行为意图的不可控性等原因,合理的规划交通,实现车辆的全自动驾驶必然随之成为一个难点。现代交通对于经济发展,社会进步的重要性不言而喻,因此世界范围的广泛学者对自动驾驶问题展开了深入研究,他们的科学探索也获得了资金和社会各界人士的支持。为了解决这一难题,科研学者提出了多种控制策略,大体上
轨迹跟踪和轨迹规划是车辆智能化的重要研究领域,本文以四轮独立驱动电动车作为控制目标,通过直接控制车辆的前轮转角和四轮的驱动/制动力矩,结合多自由度车辆模型,复杂轮胎模型和人工势场模型以及模型预测控制,线性二次型调节器和二次规划理论,实现车辆基于高速场景下超车行为的局部轨迹规划和轨迹跟踪控制,具体内容包括以下几个部分。分别针对局部轨迹规划和轨迹跟踪控制,建立了线性单轨车辆动力学模型和非线性七自由度的