Diagnosing COVID-19 from CT Scans Based on Ensemble Learning and Transfer Learning

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:yolanda0104
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
新型冠状病毒感染症(SARS-Co V-2)的迅速传播导致了新型冠状病毒感染症(COVID-19)的全球流行。全世界都十分关注这一事件的发展,对于各国政府来说,迅速有效地识别COVID-19阳性患者至关重要。目前有许多可用的分子检测方法,但并不是所有医院都能立即采用这些方法。对于缺乏分子检测的医院来说,另一种通过CT扫描诊断COVID-19的方法更为适用。然而,COVID-19与其他病毒性肺炎在CT扫描上的差异并不明显,这使得对患者进行准确可靠的筛查极其困难。本文旨在设计一套稳健的系统,利用集成学习技术,快速可靠地识别胸部CT图像中的阳性病例并将迁移学习应用于本工作中深度学习技术开发检测系统中。预训练的CNN可以与这种技术一起集合使用,以解决完全不同但相关的任务。Stacking和WAE方法与三种改进的CNN(VGG19、Res Net50和Dense Net201)相结合,以确保所提出的系统在胸部CT图像中识别阳性病例时的鲁棒性。Stacking是按照2-Levels和3-Levels进行的。采用两个胸部CT数据集生成的三个基于集成学习的模型进行实验。在对每种方法的比较研究中,使用了许多评价指标(准确度、召回率、精确度和f1-score)。实验结果表明,WAE提供了最准确和可靠的性能和高召回值,这是医疗应用中最重要的,因为低召回率更有可能导致感染没有被检测到。
其他文献
受激布里渊散射(SBS)脉宽压缩技术已被证明是实现单纵模、相位共轭和任意波长运转的高功率短脉冲激光的有效手段,并能显著提升激光系统的负载、改善光束质量。受声子寿命的限制,目前SBS脉宽压缩技术可实现的输出脉冲宽度为亚纳秒。本文对理论压缩极限短于介质声子寿命的瞬态SBS脉宽压缩进行研究,实现近压缩极限的脉宽压缩,以进一步提升SBS脉宽压缩技术获取短脉冲的能力。首先,对SBS的物理过程进行了描述,并从
学位
随着工业生产、环境监测以及医疗诊断等领域对气体传感器的需求量不断增加,气体传感器的研究已经引起了产业界和学术界的广泛关注。其中,氧化锌(ZnO)基气体传感器因其具有电荷迁移率高、成本低、无毒和化学性质稳定等优点,成为最有前途的气体传感器之一。然而,该类气体传感器在用于检测微量气体时,还存在选择性差、工作温度高、灵敏度低和信号漂移等问题。本课题以ZnO作为基底材料,通过形貌优化、异质结构建、贵金属修
学位
随着生物医疗、光通信、食品安全等产业的不断发展,AlGaN基深紫外发光二极管(deep-ultraviolet light-emitting diodes,DUV LEDs)因具有芯片尺寸小,驱动电压低、环境污染小等优势而备受关注。同时,目前已有科学研究表明,深紫外LED对细菌病毒有很好的灭杀效果,然而目前深紫外LED的外量子效率(external quantum efficiency,EQE)非
学位
报纸
当集成电路技术节点已经缩小至7 nm及以下时,金属Cu作为互连线因严重的电迁移问题已不能满足集成电路的发展需求。Co因具有更小的电子平均自由程、更强的抗电迁移特性、高中横比中良好的共形沉积等特性而被认为是替代Cu作为互连线的最有前景的金属材料。然而,Co互连在粗抛过程中获得较高去除速率的同时表面容易发生腐蚀,且国内外多集中于Co平面的研究,对Co高低差的平坦化鲜有报道。因此,本文针对Co互连粗抛过
学位
硅通孔(TSV)技术,可以获得更好的集成电路兼容性和互连密度,使芯片的堆叠不再局限于面板级别,实现了2.5D/3D互连。但是相较于铜大马士革布线工艺,硅通孔铜镀层厚度可达到十几微米,需要更快的平坦化技术。研究硅通孔正面化学机械抛光(CMP)高速去除铜覆盖层、有效抑制碟形坑的生成以及表面质量的改善,是后续获得合格芯片的关键。本论文对碱性TSV铜层抛光液进行研究,主要目标是实现TSV铜层的高去除速率和
学位
随着世界工业技术的不断进步和发展,以集成电路制造为基础的传统半导体产业成为推动其发展不可或缺的重要基石。其中,二氧化硅(SiO2)常作为栅极氧化层、牺牲层、绝缘层和层间介质材料被广泛用于集成电路(IC)芯片的制造过程之中。化学机械抛光(CMP)通过统合机械磨削和化学作用,成为工业生产中可兼顾晶圆全局和局部平坦化的唯一技术。目前,随着器件尺寸逐渐接近原子和分子尺度,在保证表面形貌质量的前提下,实现层
学位
钠离子电池(SIBs)因资源丰富、环境友好和成本低等优势有希望应用于大规模电网储能领域。正极材料是钠离子电池的重要组成部分之一,决定其能量密度、功率密度和循环寿命。因此,开发高性能的正极材料是推动SIBs商业化的关键。正极材料中锰基层状过渡金属(TM)氧化物因具有合成方法简单、结构可调控性强和理论比容量高等优点得到广泛研究。然而,在充放电过程中,Na+/空位有序重排引起的扩散能垒会严重阻碍Na+的
学位
随着半导体产业的发展,集成电路早已进入极大规模集成电路(GLSI)时代。目前,芯片关键技术节点已经发展到5 nm以下,传统制程工艺中用到的钽和氮化钽(Ta/Ta N)阻挡层材料已难以满足集成电路(IC)发展的需求。为实现特征尺寸在5 nm以下的芯片制程,金属钌(Ru)凭借其台阶覆盖率高、电阻率小、稳定性好等优点被选为未来最具潜力的阻挡层材料。目前国内外基于铜互连钌基阻挡层CMP的研究较少,且大多数
学位
近年来,具有独特发光特性的钙钛矿材料,引起了研究领域和商业领域的极大关注。目前大多数关于钙钛矿发光二极管(Pe LEDs)中钙钛矿薄膜的制备主要采用溶液法,热蒸镀法是近几年才开始应用于制备钙钛矿薄膜。现在热蒸镀法制备出的器件性能还远达不到溶液法制备的器件,而界面修饰策略已被证实是改善Pe LEDs器件性能的有效策略,因此本论文以全无机钙钛矿Cs Pb Br3为研究对象,主要探究了双界面修饰策略对基
学位